zoukankan      html  css  js  c++  java
  • UVa 1471 Defense Lines (二分+set优化)

    题意:给定一个序列,然后让你删除一段连续的序列,使得剩下的序列中连续递增子序列最长。

    析:如果暴力枚举那么时间复杂度肯定受不了,我们可以先进行预处理,f[i] 表示以 i 结尾的连续最长序列,g[i] 表示以 i 开头的连续最长序列,然后再去找最长的,

    枚举 i,然后用set来维护一个单调上升的序列,我们把已经扫过的用set处理,按a[i]从小到大排序,然后f[i]也是从小到大,把不是最优的解全删掉,从而减少的要遍历的数目。

    然后动态处理每个值。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #define debug puts("+++++")
    //#include <tr1/unordered_map>
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    //using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 2e5 + 5;
    const LL mod = 1e3 + 7;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
    const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    inline int gcd(int a, int b){  return b == 0 ? a : gcd(b, a%b); }
    inline int lcm(int a, int b){  return a * b / gcd(a, b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    int a[maxn];
    int g[maxn], f[maxn];
    struct Node{
        int id, num;
        Node(int i, int n) : id(i), num(n) { }
        bool operator < (const Node &p) const{
            return id < p.id;
        }
    };
    set<Node> sets;
    set<Node> :: iterator it;
    
    int main(){
        int T;  cin >> T;
        while(T--){
            sets.clear();
            scanf("%d", &n);
            for(int i = 0; i < n; ++i)  scanf("%d", a+i);
            f[0] = 1;
            for(int i = 1; i < n; ++i)
                if(a[i] > a[i-1])  f[i] = f[i-1] + 1;
                else f[i] = 1;
            g[n-1] = 1;
            for(int i = n-2; i >= 0; --i)
                if(a[i] < a[i+1])  g[i] = g[i+1] + 1;
                else g[i] = 1;
            int ans = f[0] + g[0] - 1;
            sets.insert(Node(a[0], 1));
            for(int i = 1; i < n; ++i){
                Node u(a[i], f[i]);
                it = sets.lower_bound(u);
                bool ok = true;
                if(it != sets.begin()){
                    --it;
                    ans = Max(ans, g[i] + it->num);
                    if(it->num >= f[i]) ok = false;
                }
                if(ok){
                    sets.erase(u);
                    while(it != sets.end() && it->id > a[i] && it->num <= f[i])  sets.erase(it++);
                    sets.insert(u);
                }
            }
            printf("%d
    ", ans);
        }
        return 0;
    }
    
  • 相关阅读:
    十月二十七学习报告
    十月二十六学习报告
    十月二十五学习报告
    十月二十四学习报告
    十月二十三学习报告
    十月二十二学习报告
    十月二十一学习报告
    十月十九学习报告
    十月十七学习报告
    十月十六学习报告
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/5995511.html
Copyright © 2011-2022 走看看