zoukankan      html  css  js  c++  java
  • HDU 4893 Wow! Such Sequence! (树状数组)

    题意:给有三种操作,一种是 1 k d,把第 k 个数加d,第二种是2 l r,查询区间 l, r的和,第三种是 3 l r,把区间 l,r 的所有数都变成离它最近的Fib数,

    并且是最小的那个。

    析:觉得应该是线段树的,但是。。。不会啊。。。就想胡搞一下。

    所以用了树状数组,也就是和的,然后用一个set来维护每个不是Fibnoccia的数,然后再进行计算。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    //#include <tr1/unordered_map>
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    //using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e5 + 5;
    const LL mod = 10000000000007;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
    const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
    const int hr[]= {-2, -2, -1, -1, 1, 1, 2, 2};
    const int hc[]= {-1, 1, -2, 2, -2, 2, -1, 1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    LL sum1[maxn<<1], a[maxn];
    LL F[150];
    int cnt;
    set<int> sets;
    set<int> :: iterator it;
    int lowbit(int x){ return x & (-x); }
    
    void add1(int x, LL d){
        while(x <= n){
            sum1[x] += d;
            x += lowbit(x);
        }
    }
    
    LL qurey1(int x){
        LL ans = 0;
        while(x > 0){
            ans += sum1[x];
            x -= lowbit(x);
        }
        return ans;
    }
    
    void solve(int l, int r){
        it = sets.lower_bound(l);
        while(it != sets.end() && *it <= r){
            LL *tmp = lower_bound(F+1, F+cnt, a[*it]);
            if(a[*it] == *tmp){ sets.erase(it++); continue; }
            LL *tmpp = tmp - 1;
            if(*tmp - a[*it] >= a[*it] - *tmpp){
                add1(*it, *tmpp - a[*it]);
                a[*it] = *tmpp;
                sets.erase(it++);
            }
            else{
                add1(*it, *tmp - a[*it]);
                a[*it] = *tmp;
                sets.erase(it++);
            }
        }
    }
    int main(){
        F[0] = F[1] = 1;
        cnt = 2;
        while(1){
            F[cnt] = F[cnt-1] + F[cnt-2];
            if(F[cnt] > (1LL<<61))  break;
            ++cnt;
        }
        ++cnt;
        while(scanf("%d %d", &n, &m) == 2){
            sets.clear();
            for(int i = 0; i <= n; ++i){
                sum1[i] = a[i] = 0;
                sets.insert(i);
            }
            int l, r, x;
            for(int i = 0; i < m; ++i){
                scanf("%d", &x);
                if(1 == x){
                    scanf("%d %d", &l, &r);
                    a[l] += r;
                    sets.insert(l);
                    add1(l, (LL)r);
                }
                else if(2 == x){
                    scanf("%d %d", &l, &r);
                    printf("%I64d
    ", qurey1(r) - qurey1(l-1));
                }
                else if(3 == x){
                    scanf("%d %d", &l, &r);
                    solve(l, r);
                }
            }
        }
        return 0;
    }
    
  • 相关阅读:
    Android 面试题--Activity
    Android 手机卫士--平移动画实现
    Android 手机卫士--导航界面4的业务逻辑
    Android 手机卫士--获取联系人信息并显示与回显
    Android 手机卫士--绑定sim卡序列号
    Android 手机卫士--导航界面3、4和功能列表界面跳转逻辑处理
    Android 手机卫士--导航界面2
    Android 手机卫士--9patch图
    Add Columns to the Web Sessions List
    C# System.Collections.Generic.Dictionary
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6014178.html
Copyright © 2011-2022 走看看