题意:有n只青蛙,m个石头(围成圆圈)。第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少?
析:首先可以知道的是第 i 只青蛙可以跳到 k * gcd(ai, m),然后我就计算所有的等差数列,但是好像如果全算,那么就可能会有重复,所以我们考虑用容斥原理。
先把 m 的所有因数都求出来,然后把 gcd(ai, m),都标记一下,然后再去计算,多了就减去,少了就加。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e4 + 5; const LL mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } vector<int> v; int f[maxn], num[maxn]; int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %d", &n, &m); v.clear(); for(int i = 1; i*i <= m; ++i) if(m % i == 0){ v.push_back(i); if(i*i != m && i != 1) v.push_back(m/i); } sort(v.begin(), v.end()); memset(num, 0, sizeof num); memset(f, 0, sizeof f); int x; for(int i = 0; i < n; ++i){ scanf("%d", &x); x = gcd(x, m); for(int j = 0; j < v.size(); ++j) if(v[j] % x == 0){ f[j] = 1; } } LL ans = 0; for(int i = 0; i < v.size(); ++i) if(f[i] != num[i]){ int tmp = m / v[i] - 1; ans += (LL)m * tmp / 2 * (f[i] - num[i]); tmp = f[i] - num[i]; for(int j = 0; j < v.size(); ++j) if(v[j] % v[i] == 0){ num[j] += tmp; } } printf("Case #%d: %I64d ", kase, ans); } return 0; }