zoukankan      html  css  js  c++  java
  • Gym 100548F Color (数论容斥原理+组合数)

    题意:给定 m 种颜色,把 n 盆花排成一直线的花涂色。要求相邻花的颜色不相同,且使用的颜色恰好是k种。问一共有几种涂色方法。

    析:首先是先从 m 种颜色中选出 k 种颜色,然后下面用的容斥原理,当时没想出来,如果是只用一种颜色,那么肯定不行,如果用两种颜色,可以有这么方法,

    2 * (2-1) ^ (n-1)种,如果是只用 i 种那么就是  i * (i-1) ^ (n-1)。然后依次求就好。再就是求组合数的时候,由于太大,不能用递推,所以要用逆元。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <ctime>
    #include <cstdlib>
    #define debug puts("+++++")
    //#include <tr1/unordered_map>
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    //using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e6 + 5;
    const LL mod = 1e9 + 7;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
    const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    inline int gcd(int a, int b){  return b == 0 ? a : gcd(b, a%b); }
    inline int lcm(int a, int b){  return a * b / gcd(a, b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    LL f[maxn];
    LL cm[maxn], ck[maxn];
    
    void init(){
        f[1] = 1;
        for(int i = 2; i < maxn; ++i)
            f[i] = (mod - mod/i) * f[mod%i] % mod;
    }
    
    LL quick_pow(LL a, LL n){
        LL ans = 1LL;
        while(n){
            if(n & 1)  ans = ans * a % mod;
            a = a * a % mod;
            n >>= 1;
        }
        return ans;
    }
    
    LL solve(LL n, LL m, LL k){
        ck[0] = cm[0] = 1;
        for(int i = 1; i <= k; ++i){
            cm[i] = cm[i-1] * (m - i + 1) % mod * f[i] % mod;
            ck[i] = ck[i-1] * (k - i + 1) % mod * f[i] % mod;
        }
        LL ans = 0;
        LL cnt = 1;
        for(int i = k; i >= 1; --i, cnt = -cnt)
            ans = (mod + ans + ck[i] * i % mod * quick_pow(i-1, n-1) * cnt % mod) % mod;
        return ans * cm[k] % mod;
    }
    
    int main(){
        init();
        int T;  cin >> T;
        LL n, m, k;
        for(int kase = 1; kase <= T; ++kase){
            scanf("%I64d %I64d %I64d", &n, &m, &k);
            printf("Case #%d: %I64d
    ", kase, solve(n, m, k));
        }
        return 0;
    }
    
  • 相关阅读:
    uni-app、VUE、微信小程序之异同
    git学习之通俗易懂篇(四)
    css学习之-----flex布局
    git学习之通俗易懂篇(三)
    git学习之通俗易懂篇(二)
    防止非法登录
    MVC 路由配置
    C# 跨线程调用控件
    【推荐】gitee 的使用,sts4公钥私钥的配置,
    查看java的springboot的内存占用
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6044430.html
Copyright © 2011-2022 走看看