题意:人生来就有三个生理周期,分别为体力、感情和智力周期,它们的周期长度为23天、28天和33天。每一个周期中有一天是高峰。在高峰这天,
人会在相应的方 面表现出色。例如,智力周期的高峰,人会思维敏捷,精力容易高度集中。因为三个周期的周长不同,所以通常三个周期的高峰不会落在同一天。
对于每个人,我们 想知道何时三个高峰落在同一天。对于每个周期,我们会给出从当前年份的第一天开始,到出现高峰的天数(不一定是第一次高峰出现的时间)。
你的任务是给定一 个从当年第一天开始数的天数,输出从给定时间开始(不包括给定时间)下一次三个高峰落在同一天的时间(距给定时间的天数)。
例如:给定时间为10,下次出 现三个高峰同天的时间是12,则输出2(注意这里不是3)。
析:中国剩余定理。假设第 s 天就同时发生,s = a1 + t1 * k1 = a2 + t2 * k2 = a3 + t3 * k3,那么我就很容易得到一个同余方程组。
也就是 x mod t1 = a1, x mod t2 = a2, x mod t3 = a3。然后就可以用中国剩余定理才做了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <ctime>
#include <cstdlib>
#define debug puts("+++++")
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1;
typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e6 + 5;
const LL mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
inline int lcm(int a, int b){ return a * b / gcd(a, b); }
//int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
//inline bool is_in(int r, int c){
// return r >= 0 && r < n && c >= 0 && c < m;
//}
int exgcd(int a, int b, int &x, int &y){
if(!b){ x = 1; y = 0; return a; }
else{ int r = exgcd(b, a%b, y, x); y -= x * (a / b); return r; }
}
int CRT(int *a, int *m, int n){
int sum = 1, res = 0;
for(int i = 0; i < n; ++i) sum *= m[i];
for(int i = 0; i < n; ++i){
int x, y;
int t = sum / m[i];
exgcd(t, m[i], x, y);
res = (res + t * x * a[i]) % sum;
}
res = (res + sum + sum - a[3]) % sum;
return res;
}
int a[5], m[5];
int main(){
m[0] = 23; m[1] = 28; m[2] = 33;
int kase = 0;
while(true){
int res = 0;
for(int i = 0; i < 4; ++i){
scanf("%d", a+i);
res += a[i];
}
if(res < 0) break;
res = CRT(a, m, 3);
if(!res) printf("Case %d: the next triple peak occurs in 21252 days.
", ++kase);
else printf("Case %d: the next triple peak occurs in %d days.
", ++kase, res);
}
return 0;
}