题意:人生来就有三个生理周期,分别为体力、感情和智力周期,它们的周期长度为23天、28天和33天。每一个周期中有一天是高峰。在高峰这天,
人会在相应的方 面表现出色。例如,智力周期的高峰,人会思维敏捷,精力容易高度集中。因为三个周期的周长不同,所以通常三个周期的高峰不会落在同一天。
对于每个人,我们 想知道何时三个高峰落在同一天。对于每个周期,我们会给出从当前年份的第一天开始,到出现高峰的天数(不一定是第一次高峰出现的时间)。
你的任务是给定一 个从当年第一天开始数的天数,输出从给定时间开始(不包括给定时间)下一次三个高峰落在同一天的时间(距给定时间的天数)。
例如:给定时间为10,下次出 现三个高峰同天的时间是12,则输出2(注意这里不是3)。
析:中国剩余定理。假设第 s 天就同时发生,s = a1 + t1 * k1 = a2 + t2 * k2 = a3 + t3 * k3,那么我就很容易得到一个同余方程组。
也就是 x mod t1 = a1, x mod t2 = a2, x mod t3 = a3。然后就可以用中国剩余定理才做了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <ctime> #include <cstdlib> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e6 + 5; const LL mod = 1e9 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } //int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } //inline bool is_in(int r, int c){ // return r >= 0 && r < n && c >= 0 && c < m; //} int exgcd(int a, int b, int &x, int &y){ if(!b){ x = 1; y = 0; return a; } else{ int r = exgcd(b, a%b, y, x); y -= x * (a / b); return r; } } int CRT(int *a, int *m, int n){ int sum = 1, res = 0; for(int i = 0; i < n; ++i) sum *= m[i]; for(int i = 0; i < n; ++i){ int x, y; int t = sum / m[i]; exgcd(t, m[i], x, y); res = (res + t * x * a[i]) % sum; } res = (res + sum + sum - a[3]) % sum; return res; } int a[5], m[5]; int main(){ m[0] = 23; m[1] = 28; m[2] = 33; int kase = 0; while(true){ int res = 0; for(int i = 0; i < 4; ++i){ scanf("%d", a+i); res += a[i]; } if(res < 0) break; res = CRT(a, m, 3); if(!res) printf("Case %d: the next triple peak occurs in 21252 days. ", ++kase); else printf("Case %d: the next triple peak occurs in %d days. ", ++kase, res); } return 0; }