zoukankan      html  css  js  c++  java
  • HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片。求需要买多少包才能拿到所以的N张卡片,求次数的期望。

    析:期望DP,是很容易看出来的,然后由于得到每张卡片的状态不知道,所以用状态压缩,dp[i] 表示这个状态时,要全部收齐卡片的期望。

    由于有可能是什么也没有,所以我们要特殊判断一下。然后就和剩下的就简单了。

    另一个方法就是状态压缩+容斥,同样每个状态表示收集的状态,由于每张卡都是独立,所以,每个卡片的期望就是1.0/p,然后要做的就是要去重,既然要去重,

    那么就是得用容斥原理了。

    代码如下:

    期望DP+状态压缩

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    //#include <tr1/unordered_map>
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    //using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = (1<<20) + 5;
    const LL mod = 10000000000007;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
    const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    double dp[maxn];
    double p[25];
    
    int main(){
        while(scanf("%d", &n) == 1){
            double pp = 1.0;
            for(int i = 0; i < n; ++i){
                scanf("%lf", p+i);
                pp -= p[i];
            }
            dp[(1<<n)-1] = 0.0;
            for(int i = (1<<n)-2; i >= 0; --i){
                double have = 0.0, sum = 1.0;
                for(int j = 0; j < n; ++j)
                    if(i&(1<<j))  have += p[j];
                    else sum += p[j] * dp[i|(1<<j)];
                dp[i] = sum / (1.0 - pp - have);
            }
            printf("%.4f
    ", dp[0]);
        }
        return 0;
    }
    

     状态压缩+容斥

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    //#include <tr1/unordered_map>
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    //using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = (1<<20) + 5;
    const LL mod = 10000000000007;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
    const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    double p[25];
    
    int main(){
        while(scanf("%d", &n) == 1){
            for(int i = 0; i < n; ++i) scanf("%lf", p+i);
            double ans = 0.0;
            for(int i = 1; i < (1<<n); ++i){
                int cnt = 0;
                double sum = 0.0;
                for(int j = 0; j < n; ++j)  if(i&(1<<j)){
                    sum += p[j];
                    ++cnt;
                }
                ans += (cnt & 1) ? 1.0/sum : -1.0/sum;
            }
            printf("%f
    ", ans);
    
        }
        return 0;
    }
    
  • 相关阅读:
    两个链表的第一个公共结点
    数组中的逆序对
    第一个只出现一次的字符(字符流中第一个只出现一次的字符)
    丑数
    最长不含有重复字符的子字符串
    礼物的最大价值
    把数字翻译成字符串
    把数组排成最小的数
    [CSP-S模拟测试]:赤(red)(WQS二分+DP)
    [CSP-S模拟测试]:斯诺(snow)(数学+前缀和+树状数组)
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6135706.html
Copyright © 2011-2022 走看看