zoukankan      html  css  js  c++  java
  • UVa 10795 A Different Task (递归)

    题意:汉诺塔,给定一个初始局面,和一个目标局面,问你最少走多少步。

    析:首先考虑最大的盘子,如果最大的盘子已经在相应的柱子上,那么就不用移动了,所以首先先找到要移动的最大盘子k,然后再移动最大的盘子,假设要把它从1移动到2,

    那么我们先把1-k-1,移动到3号柱子上,这个局面称为参考局面,那么我们可以这样考虑,把初始状态和目标状态移动成目标局面,然后再移动k即可。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <unordered_map>
    #include <unordered_set>
    #define debug() puts("++++");
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e4 + 5;
    const int mod = 2000;
    const int dr[] = {-1, 1, 0, 0};
    const int dc[] = {0, 0, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    int a[65], b[65];
    
    LL f(int *a, int k, int ff){
        if(!k)  return k;
        if(a[k] == ff)  return f(a, k-1, ff);
        return f(a, k-1, 6-a[k]-ff) + (1LL<<k-1);
    }
    
    int main(){
        int kase = 0;
        while(scanf("%d", &n) == 1 && n){
            for(int i = 1; i <= n; ++i)  scanf("%d", a+i);
            for(int i = 1; i <= n; ++i)  scanf("%d", b+i);
            int k = n;
            while(k && a[k] == b[k])  --k;
            LL ans = 0;
            if(k > 0)  ans = f(a, k-1, 6-a[k]-b[k]) + f(b, k-1, 6-a[k]-b[k]) + 1;
            printf("Case %d: %lld
    ", ++kase, ans);
        }
        return 0;
    }
    
  • 相关阅读:
    generator
    JS 中 apply 、call 、bind的详解
    前端面试题(24-js)
    JS原型链深入了解
    Java12新特性
    Java11-ZGC
    Java11新特性
    Java10新特性
    Java9新特性
    CF1385E【Directing Edges】 (拓扑排序)
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6407825.html
Copyright © 2011-2022 走看看