题意:给定m*n的矩阵,有的是空地有的是墙,找出一个面积最大的子矩阵。
析:如果暴力,一定会超时的。我们可以使用扫描线,up[i][j] 表示从(i, j)向上可以到达的最高高度,left[i][j]表示(i, j) 的左边界,right[i][j]右边界。
这三个可以用递推来实现。从向下扫描,每次更新最大值。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <unordered_map> #include <unordered_set> #define debug() puts("++++"); #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 5; const int mod = 2000; const int dr[] = {-1, 1, 0, 0}; const int dc[] = {0, 0, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } bool a[maxn][maxn]; int up[maxn][maxn], l[maxn][maxn], r[maxn][maxn]; int main(){ int T; cin >> T; while(T--){ scanf("%d %d", &n, &m); for(int i = 0; i < n; ++i) for(int j = 0; j < m; ++j){ int ch = getchar(); while(ch != 'F' && ch != 'R') ch = getchar(); a[i][j] = ch == 'F' ? false : true; } int ans = 0; for(int i = 0; i < n; ++i){ int lo = -1, ro = m; for(int j = 0; j < m; ++j) if(a[i][j]) { up[i][j] = l[i][j] = 0; lo = j; } else{ up[i][j] = i ? up[i-1][j] + 1 : 1; l[i][j] = i ? max(l[i-1][j], lo + 1) : lo + 1; } for(int j = m-1; j >= 0; --j) if(a[i][j]) r[i][j] = n, ro = j; else{ r[i][j] = i ? min(r[i-1][j], ro-1) : ro - 1; ans = max(ans, up[i][j] * (r[i][j] - l[i][j] + 1)); } } printf("%d ", ans * 3); } return 0; }