zoukankan      html  css  js  c++  java
  • POJ 1741 Tree (树分治)

    题意:给定一棵树,然后给定每条边的权值,问你有多少个点对满足路径的权和小于等于m。

    析:直接枚举是肯定不行的,会TLE,利用分治的思想,我们可以把树按重心分成几部分,那么答案就是所有子树的点对都经过重心的,对于所有的子树的重心也是这样,对于经过重心的,可以先求出每个点都重心的距离,再排序,利用单调性进行计算,这样的话会算重了,多算了在同一棵子树上的情况,这样再减去就好了。时间复杂度O(n*logn*logn)。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e16;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e4 + 10;
    const int mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    vector<P> G[maxn];
    int sz[maxn], f[maxn];
    int root, num, ans;
    int d[maxn];
    bool vis[maxn];
    vector<int> dist;
    
    void dfs_for_root(int u, int fa){
      sz[u] = 1;  f[u] = 0;
      for(int i = 0; i < G[u].size(); ++i){
        int v = G[u][i].first;
        if(v == fa || vis[v])  continue;
        dfs_for_root(v, u);
        sz[u] += sz[v];
        f[u] = max(f[u], sz[v]);
      }
      f[u] = max(f[u], num - sz[u]);
      if(f[u] < f[root])  root = u;
    }
    
    void dfs_for_dist(int u, int fa){
      dist.push_back(d[u]);
      for(int i = 0; i < G[u].size(); ++i){
        int v = G[u][i].first;
        if(v == fa || vis[v])  continue;
        d[v] = d[u] + G[u][i].second;
        dfs_for_dist(v, u);
      }
    }
    
    int solve(int u, int val){
      dist.clear();
      int res = 0;
      d[u] = val;
      dfs_for_dist(u, -1);
      sort(dist.begin(), dist.end());
      for(int l = 0, r = (int)dist.size()-1; l < r; )
        if(dist[l] + dist[r] <= m)  res += r - l++;
        else --r;
      return res;
    }
    
    void dfs_for_ans(int u){
      ans += solve(u, 0);
      vis[u] = true;
      for(int i = 0; i < G[u].size(); ++i){
        int v = G[u][i].first;
        if(vis[v])  continue;
        ans -= solve(v, G[u][i].second);
        root = 0;
        f[0] = num = sz[v];
        dfs_for_root(v, u);
        dfs_for_ans(root);
      }
    }
    
    int main(){
      while(scanf("%d %d", &n, &m) == 2 && n+m){
        for(int i = 1; i <= n; ++i)  G[i].clear();
        for(int i = 1; i < n; ++i){
          int u, v, l;
          scanf("%d %d %d", &u, &v, &l);
          G[u].push_back(P(v, l));
          G[v].push_back(P(u, l));
        }
        f[0] = num = n;
        root = 0;
        memset(vis, 0, sizeof vis);
        dfs_for_root(1, root);
        ans = 0;
        dfs_for_ans(root);
        printf("%d
    ", ans);
      }
      return 0;
    }
    

      

  • 相关阅读:
    集合-ArrayList 源码解析
    >>《配色设计原理.pdf》
    >>《[美国视觉设计学院用书:完成设计(从理论到实践)].(萨马拉).温迪等.扫描版.pdf》
    《Photoshop智能手机APP界面设计.pdf》
    《贴心设计:打造高可用性的移动产品》——5.平板电脑和电子书阅读器
    3H Buy a Ticket —— Dij
    最短路板子
    3E A Simple Problem —— 数论
    3D 城池攻占 —— 左偏树
    3A Least Cost Bracket Sequence —— 贪心
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7284775.html
Copyright © 2011-2022 走看看