zoukankan      html  css  js  c++  java
  • ZOJ 3201 Tree of Tree (树形DP)

    题意:给定一棵树,求大小为k的一个子树的最大权值。

    析:dp[i][j] 表示以 i 为根大小为 j 时最大权值。dp[i][j] = max{dp[i][j-k] + dp[son][k]},状态方程。

    有一个要注意,因为要选的是一棵子树,所以以哪个点为根都行,也就是说,对于任意子树都能找一个合适的根,使得不会出现父结点与子结点冲突。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e16;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-6;
    const int maxn = 100 + 10;
    const int mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r > 0 && r <= n && c > 0 && c <= m;
    }
    
    int dp[maxn][maxn];
    int val[maxn];
    struct Edge{
      int to, next;
    };
    int head[maxn], cnt;
    Edge edge[maxn<<1];
    
    void add_edge(int u, int v){
      edge[cnt].to = v;
      edge[cnt].next = head[u];
      head[u] = cnt++;
    }
    int ans;
    
    void dfs(int u, int fa){
      dp[u][1] = val[u];
      for(int i = head[u]; ~i; i = edge[i].next){
        int v = edge[i].to;
        if(v == fa)  continue;
        dfs(v, u);
        for(int j = m; j > 1; --j)
          for(int k = 1; k < j; ++k)
            dp[u][j] = max(dp[u][j], dp[u][j-k] + dp[v][k]);
      }
      ans = max(ans, dp[u][m]);
    }
    
    int main(){
      while(scanf("%d %d", &n, &m) == 2){
        for(int i = 0; i < n; ++i)  scanf("%d", val+i);
        memset(head, -1, sizeof head);
        cnt = 0;
        for(int i = 1; i < n; ++i){
          int u, v;
          scanf("%d %d", &u, &v);
          add_edge(u, v);
          add_edge(v, u);
        }
        memset(dp, 0, sizeof dp);
        ans = 0;
        dfs(0, -1);
        printf("%d
    ", ans);
      }
      return 0;
    }
    

      

  • 相关阅读:
    WinForm容器内控件批量效验是否同意为空?设置是否仅仅读?设置是否可用等方法分享
    EF的CRUD
    SICP 习题 (1.41)解题总结
    陈光标挽救纽约穷人背后有何玄机?
    poj 1276 Cash Machine(多重背包)
    vue的生命周期
    vue mounted组件的使用
    babel-polyfill的几种使用方式
    可拖拽排序的vue组件
    import、export 和 export default
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7351526.html
Copyright © 2011-2022 走看看