zoukankan      html  css  js  c++  java
  • HDU 6069 Counting Divisors (素数+筛法)

    题意:给定 l,r,k,让你求,其中 l <= r <= 1e12, r-l <= 1e6, k <= 1e7。

    析:首先这个题肯定不能暴力,但是给定的区间较小,可以考虑筛选,n = p1^c1*p2^c2*....*pn^cn,那么 d(n) = (c1+1) * (c2+1) * ...*(cn+1)。

    d(n^k) =  (kc1+1) * (kc2+1) * ...*(kcn+1),这样的话,我们只要求出每个数的素因子的个数就好,直接算还是不行,只能先把1-sqrt(n)之间的素数先算出来,这个是可以实现的,然后再考虑枚举素数,然后计算在 l - r 这个区间内的数进行筛选,也就是说从第一个能整除prime[i]的数开始,假设是x,先把prime[i]除尽,然后再把 x 加上prime[i],再除尽,依次。。。这样的话,复杂度会小很多。注意mod的不是1e9+7

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e6 + 10;
    const LL mod = 998244353;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
        return r > 0 && r <= n && c > 0 && c <= m;
    }
    vector<int> prime;
    bool vis[maxn];
    
    void init(){
      for(int i = 2; i < maxn; ++i)  if(!vis[i]){
        prime.push_back(i);
        if(i > 1000)  continue;
        for(int j = i*i; j < maxn; j += i)  vis[j] = 1;
      }
    }
    
    LL sum[maxn], a[maxn];
    
    int main(){
      init();
      int T;  cin >> T;
      while(T--){
        LL k, n, m;
        scanf("%I64d %I64d %I64d", &m, &n, &k);
        for(int i = 0; i <= n-m; ++i){
          sum[i] = 1LL;
          a[i] = i + m;
        }
    
        for(int i = 0; i < prime.size(); ++i){
          LL st = (LL)(m/prime[i] + (m%prime[i] != 0)) * prime[i];
          for(LL j = st; j <= n; j += prime[i]){
            int res = 0;
            while(a[j-m] % prime[i] == 0){
              ++res;  a[j-m] /= prime[i];
            }
            sum[j-m] = ((k * res % mod + 1LL) * sum[j-m]) % mod;
          }
        }
    
        LL ans = 0;
        for(int i = 0; i <= n - m; ++i){
          if(a[i] > 1LL)  sum[i] = sum[i] * (k + 1) % mod;
          ans = (ans + sum[i]) % mod;
        }
        printf("%I64d
    ", ans);
      }
      return 0;
    }
    

      

  • 相关阅读:
    document基本操作 动态脚本-动态样式-创建表格
    js原型模式和继承
    NuGet本地包自定义路径
    技术文档链接收藏
    数据结构排序
    Insertion Sort
    选择排序之javascript
    冒泡排序之javascript
    C++双向链表
    单向链表
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7374474.html
Copyright © 2011-2022 走看看