题意:给定 l,r,k,让你求,其中 l <= r <= 1e12, r-l <= 1e6, k <= 1e7。
析:首先这个题肯定不能暴力,但是给定的区间较小,可以考虑筛选,n = p1^c1*p2^c2*....*pn^cn,那么 d(n) = (c1+1) * (c2+1) * ...*(cn+1)。
d(n^k) = (kc1+1) * (kc2+1) * ...*(kcn+1),这样的话,我们只要求出每个数的素因子的个数就好,直接算还是不行,只能先把1-sqrt(n)之间的素数先算出来,这个是可以实现的,然后再考虑枚举素数,然后计算在 l - r 这个区间内的数进行筛选,也就是说从第一个能整除prime[i]的数开始,假设是x,先把prime[i]除尽,然后再把 x 加上prime[i],再除尽,依次。。。这样的话,复杂度会小很多。注意mod的不是1e9+7
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e6 + 10; const LL mod = 998244353; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r > 0 && r <= n && c > 0 && c <= m; } vector<int> prime; bool vis[maxn]; void init(){ for(int i = 2; i < maxn; ++i) if(!vis[i]){ prime.push_back(i); if(i > 1000) continue; for(int j = i*i; j < maxn; j += i) vis[j] = 1; } } LL sum[maxn], a[maxn]; int main(){ init(); int T; cin >> T; while(T--){ LL k, n, m; scanf("%I64d %I64d %I64d", &m, &n, &k); for(int i = 0; i <= n-m; ++i){ sum[i] = 1LL; a[i] = i + m; } for(int i = 0; i < prime.size(); ++i){ LL st = (LL)(m/prime[i] + (m%prime[i] != 0)) * prime[i]; for(LL j = st; j <= n; j += prime[i]){ int res = 0; while(a[j-m] % prime[i] == 0){ ++res; a[j-m] /= prime[i]; } sum[j-m] = ((k * res % mod + 1LL) * sum[j-m]) % mod; } } LL ans = 0; for(int i = 0; i <= n - m; ++i){ if(a[i] > 1LL) sum[i] = sum[i] * (k + 1) % mod; ans = (ans + sum[i]) % mod; } printf("%I64d ", ans); } return 0; }