题意:给定一个图,找出一个最小环。
析:暴力枚举每一条,然后把边设置为最大值,以后就不用改回来了,然后跑一遍最短路,跑 n 次就好。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
//#define mp make_pair
#define cl clear()
//#define all 1,n,1
#define FOR(x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e15;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 8000 + 50;
const LL mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
}
int ans;
struct Dijskstra{
struct Edge{
int from, to, dist;
Edge() { }
Edge(int f, int t, int v) : from(f), to(t), dist(v) { }
};
vector<Edge> edges;
vector<int> G[maxn];
bool done[maxn];
int d[maxn];
struct HeapNode{
int d, u;
HeapNode(){ }
HeapNode(int dd, int uu) : d(dd), u(uu) { }
bool operator < (const HeapNode &p) const{
return d > p.d;
}
};
void init(int n){
for(int i = 0; i < n; ++i) G[i].cl;
edges.cl;
}
void addEdge(int from, int to, int dist){
edges.pb(Edge(from, to, dist));
G[from].pb(edges.sz-1);
}
int dijkstra(int s, int t){
priority_queue<HeapNode> pq;
ms(d, INF);
d[s] = 0;
ms(done, false);
pq.push(HeapNode(0, s));
while(!pq.empty()){
HeapNode x = pq.top(); pq.pop();
int u = x.u;
if(t == x.u) return d[t];
if(d[u] >= ans) return ans;
if(done[u]) continue;
done[u] = true;
for(int i = 0; i < G[u].sz; ++i){
Edge &e = edges[G[u][i]];
if(d[e.to] > d[u] + e.dist){
d[e.to] = d[u] + e.dist;
pq.push(HeapNode(d[e.to], e.to));
}
}
}
return d[t];
}
};
map<P, int> mp;
int cnt;
int ID(const P &p){
if(mp.count(p)) return mp[p];
return mp[p] = cnt++;
}
Dijskstra dij;
int main(){
int T; cin >> T;
for(int kase = 1; kase <= T; ++kase){
scanf("%d", &n);
mp.cl; cnt = 0;
dij.init(n*2+10);
for(int i = 0; i < n; ++i){
int x1, y1, x2, y2, w;
scanf("%d %d %d %d %d", &x1, &y1, &x2, &y2, &w);
int u = ID(P(x1, y1));
int v = ID(P(x2, y2));
dij.addEdge(u, v, w);
dij.addEdge(v, u, w);
}
ans = INF;
for(int i = 0; i < dij.edges.sz; i += 2){
int val = dij.edges[i].dist;
dij.edges[i].dist = dij.edges[i^1].dist = INF;
ans = min(ans, dij.dijkstra(dij.edges[i].from, dij.edges[i].to) + val);
}
printf("Case #%d: %d
", kase, ans == INF ? 0 : ans);
}
return 0;
}