zoukankan      html  css  js  c++  java
  • HDU 6006 Engineer Assignment (状压DP)

    题意:一共有n个任务,完成某个任务需要会一些领域的人,一共有m个工程师,每个工程师会一些领域,问这些工程师最多完成多少任务。

    析:一个简单的状压DP,在比赛,算着时间复杂度过不了,结果才15ms,说一下思路,先预处理每个工程能有哪几种工程师来完成,然后dp[i][s] 表示前 i 个任务,工程师状态为要来完成的最多几个工程,dp[i][s] = max { dp[j][s^x] + 1 }。其中 x 是完成 i 工程所以需要的工程师。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    //#define mp make_pair
    #define cl clear()
    //#define all 1,n,1
    #define FOR(x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e18;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e5 + 100;
    const LL mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r > 0 && r <= n && c > 0 && c <= m;
    }
    
    int dp[15][1500];
    int pst[20], est[20];
    int plen[20], elen[20];
    int cnt;
    map<int, int> mp;
    
    int ID(int x){
      if(mp.count(x))  return mp[x];
      return mp[x] = cnt++;
    }
    
    vector<int> v[15];
    
    int main(){
      int T;  cin >> T;
      for(int kase = 1; kase <= T; ++kase){
        scanf("%d %d", &n, &m);
        mp.cl 
    
    ;  cnt = 0;
        for(int i = 0; i < n; ++i){
          scanf("%d", &plen[i]);
          pst[i] = 0;
          for(int j = 0; j < plen[i]; ++j){
            int y;
            scanf("%d", &y);
            pst[i] |= 1<<ID(y);
          }
        }
    
        for(int i = 0; i < m; ++i){
          scanf("%d", &elen[i]);
          est[i] = 0;
          for(int j = 0; j < elen[i]; ++j){
            int y;
            scanf("%d", &y);
            if(mp.count(y))  est[i] |= 1<<mp[y];
          }
        }
    
        for(int i = 0; i < n; ++i){
          int st = 0;
          v[i].cl;
          for(int j = 0; j < m; ++j)
            if((pst[i] & est[j]) == pst[i])  v[i].pb(1<<j);
          if(plen[i] > 1){
            for(int j = 0; j < m; ++j)
              for(int k = j+1; k < m; ++k)
                if((pst[i] & (est[j]|est[k])) == pst[i])  v[i].pb(1<<j|1<<k);
          }
          if(plen[i] > 2){
            for(int j = 0; j < m; ++j)  for(int k = j+1; k < m; ++k)
              for(int l = k+1; l < m; ++l)
                if((pst[i] & (est[j]|est[k]|est[l])) == pst[i])  v[i].pb(1<<j|1<<k|1<<l);
          }
        }
    
        ms(dp, 0);
        int ans = 0;
        for(int i = 0; i < v[0].sz; ++i){
          dp[0][v[0][i]] = 1;
          ans = max(ans, dp[0][v[0][i]]);
        }
        int all = 1<<m;
        for(int i = 1; i < n; ++i){
          for(int j = 1; j < all; ++j){
            for(int k = 0; k < v[i].sz; ++k){
              if((v[i][k]&j) != v[i][k])  continue;
                for(int l = 0; l < i; ++l)
                  dp[i][j] = max(dp[i][j], dp[l][j^v[i][k]]+1);
                ans = max(ans, dp[i][j]);
            }
          }
        }
    
        printf("Case #%d: %d
    ", kase, ans);
      }
      return 0;
    }
    

      

  • 相关阅读:
    .NET西安社区 [拥抱开源,又见 .NET] 第二次活动简报
    HttpClient在.NET Core中的正确打开方式
    西安活动 | 2019年1月13号 "拥抱开源, 又见.NET" 线下交流活动报名进行中
    基于IdentityServer4 实现.NET Core的认证授权
    dnSpy 强大的.Net反编译软件
    .NET Core中实现AOP编程
    Why DDD and layered architecture
    领域驱动设计之-前言
    load average 定义(网易面试)
    sendfile“零拷贝”和mmap内存映射
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7445987.html
Copyright © 2011-2022 走看看