题意:一共有n个任务,完成某个任务需要会一些领域的人,一共有m个工程师,每个工程师会一些领域,问这些工程师最多完成多少任务。
析:一个简单的状压DP,在比赛,算着时间复杂度过不了,结果才15ms,说一下思路,先预处理每个工程能有哪几种工程师来完成,然后dp[i][s] 表示前 i 个任务,工程师状态为要来完成的最多几个工程,dp[i][s] = max { dp[j][s^x] + 1 }。其中 x 是完成 i 工程所以需要的工程师。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down //#define mp make_pair #define cl clear() //#define all 1,n,1 #define FOR(x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e18; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 100; const LL mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r > 0 && r <= n && c > 0 && c <= m; } int dp[15][1500]; int pst[20], est[20]; int plen[20], elen[20]; int cnt; map<int, int> mp; int ID(int x){ if(mp.count(x)) return mp[x]; return mp[x] = cnt++; } vector<int> v[15]; int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %d", &n, &m); mp.cl ; cnt = 0; for(int i = 0; i < n; ++i){ scanf("%d", &plen[i]); pst[i] = 0; for(int j = 0; j < plen[i]; ++j){ int y; scanf("%d", &y); pst[i] |= 1<<ID(y); } } for(int i = 0; i < m; ++i){ scanf("%d", &elen[i]); est[i] = 0; for(int j = 0; j < elen[i]; ++j){ int y; scanf("%d", &y); if(mp.count(y)) est[i] |= 1<<mp[y]; } } for(int i = 0; i < n; ++i){ int st = 0; v[i].cl; for(int j = 0; j < m; ++j) if((pst[i] & est[j]) == pst[i]) v[i].pb(1<<j); if(plen[i] > 1){ for(int j = 0; j < m; ++j) for(int k = j+1; k < m; ++k) if((pst[i] & (est[j]|est[k])) == pst[i]) v[i].pb(1<<j|1<<k); } if(plen[i] > 2){ for(int j = 0; j < m; ++j) for(int k = j+1; k < m; ++k) for(int l = k+1; l < m; ++l) if((pst[i] & (est[j]|est[k]|est[l])) == pst[i]) v[i].pb(1<<j|1<<k|1<<l); } } ms(dp, 0); int ans = 0; for(int i = 0; i < v[0].sz; ++i){ dp[0][v[0][i]] = 1; ans = max(ans, dp[0][v[0][i]]); } int all = 1<<m; for(int i = 1; i < n; ++i){ for(int j = 1; j < all; ++j){ for(int k = 0; k < v[i].sz; ++k){ if((v[i][k]&j) != v[i][k]) continue; for(int l = 0; l < i; ++l) dp[i][j] = max(dp[i][j], dp[l][j^v[i][k]]+1); ans = max(ans, dp[i][j]); } } } printf("Case #%d: %d ", kase, ans); } return 0; }