zoukankan      html  css  js  c++  java
  • HDU 6214 Smallest Minimum Cut (最小割且边数最少)

    题意:给定上一个有向图,求 s - t 的最小割且边数最少。

    析:设边的容量是w,边数为m,只要把每边打容量变成 w * (m+1) + 1,然后跑一个最大流,最大流%(m+1),就是答案。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define all 1,n,1
    #define FOR(x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 200 + 50;
    const int mod = 1000;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
      return r > 0 && r <= n && c > 0 && c <= m;
    }
    struct Edge{
      int from, to, cap, flow;
    };
    
    struct Dinic{
      int n, m, s, t;
      vector<Edge> edges;
      vector<int> G[maxn];
      bool vis[maxn];
      int d[maxn];
      int cur[maxn];
    
      void init(int n){
        this-> n = n;
        edges.clear();
        for(int i = 0; i < n; ++i)  G[i].clear();
      }
    
      void addEdge(int from, int to, int cap){
        edges.push_back((Edge){from, to, cap, 0});
        edges.push_back((Edge){to, from, 0, 0});
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
      }
    
      bool bfs(){
        memset(vis, 0, sizeof vis);
        queue<int> q;
        q.push(s);
        d[s] = 0;
        vis[s] = 1;
        while(!q.empty()){
          int x = q.front();  q.pop();
          for(int i = 0; i < G[x].size(); ++i){
            Edge &e = edges[G[x][i]];
            if(!vis[e.to] && e.cap > e.flow){
              vis[e.to] = 1;
              d[e.to] = d[x] + 1;
              q.push(e.to);
            }
          }
        }
        return vis[t];
      }
    
      int dfs(int x, int a){
        if(x == t || a == 0)  return a;
        int flow = 0, f;
        for(int &i = cur[x]; i < G[x].size(); ++i){
          Edge &e = edges[G[x][i]];
          if(d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap-e.flow))) > 0){
            e.flow += f;
            edges[G[x][i]^1].flow -= f;
            flow += f;
            a -= f;
            if(a == 0)  break;
          }
        }
        return flow;
      }
    
      int maxFlow(int s, int t){
        this->s = s; this->t = t;
        int flow = 0;
        while(bfs()){
          memset(cur, 0, sizeof cur);
          flow += dfs(s, INF);
        }
        return flow;
      }
    };
    Dinic dinic;
    
    int main(){
      int T;  cin >> T;
      while(T--){
        scanf("%d %d", &n, &m);
        dinic.init(n);
        int s, t;
        scanf("%d %d", &s, &t);
        for(int i = 0; i < m; ++i){
          int u, v, c;
          scanf("%d %d %d", &u, &v, &c);
          dinic.addEdge(u-1, v-1, c * (m+1) + 1);
        }
    
        printf("%d
    ", dinic.maxFlow(s-1, t-1) % (m+1));
      }
      return 0;
    }
    

      

  • 相关阅读:
    Area--->AreaRegistrationContext.MapRoute
    Area--->AreaRegister.RegisterAllArea()与Area区域的解析
    Area的使用
    ViewData、ViewBag、TempData、Session的区别与联系
    设计模式---装饰模式(转自可均可可博客)
    设计模式---桥接模式(转自可均可可博客)
    设计模式---适配器模式(转自可均可可博客)
    设计模式---原型模式(转自可均可可博客)
    设计模式---简单工厂、工厂方法、抽象工厂
    ASP.NET MVC Controller激活系统详解1
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7544177.html
Copyright © 2011-2022 走看看