题意:给定一个图,L代表陆地,W代表水,C表示不确定,问你最多有多少岛。
析:首先给定的L周围必须是是W,只有这样才是最优的,因为如果是L,那么还得有另外的W来包围,不是最优的,那么剩下的就剩下C了,因为要是L多,那么肯定是一个岛屿只有一个L,这样是最优的,并且周围都是W,所以可以把C看成一个点,然后向周围上下左右连边,如果周围存在C,那么就连一条,最后求一个最大独立集就OK了,二分图的最大独立集等于二分图的顶点数 - 二分图的最大匹配。也就是求二分匹配。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 50 + 50;
const LL mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
}
struct Edge{
int to, next;
};
Edge edge[maxn*maxn];
int head[maxn*maxn], cnt;
int G[maxn][maxn];
char s[maxn][maxn];
void addEdge(int u, int v){
edge[cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt++;
}
bool vis[maxn][maxn];
bool used[maxn*maxn];
int match[maxn*maxn];
void dfs(int r, int c){
for(int i = 0; i < 4; ++i){
int x = r + dr[i];
int y = c + dc[i];
if(vis[x][y] || !is_in(x, y)) continue;
vis[x][y] = 1;
if(s[x][y] == 'L') dfs(x, y);
else s[x][y] = 'W';
}
}
bool dfs(int u){
used[u] = true;
for(int i = head[u]; ~i; i = edge[i].next){
int v = edge[i].to, w = match[v];
if(w < 0 || !used[w] && dfs(w)){
match[u] = v;
match[v] = u;
return true;
}
}
return false;
}
int main(){
scanf("%d %d", &n, &m);
for(int i = 0; i < n; ++i)
scanf("%s", s[i]);
int ans = 0;
FOR(i, 0, n) FOR(j, 0, m)
if(!vis[i][j] && s[i][j] == 'L'){
vis[i][j] = 1;
dfs(i, j); ++ans;
}
ms(G, -1); ms(head, -1); cnt = 0;
int idx = 0;
FOR(i, 0, n) FOR(j, 0, m)
if(s[i][j] == 'C') G[i][j] = idx++;
FOR(i, 0, n) FOR(j, 0, m)
if(i+j&1&&~G[i][j]){
for(int k = 0; k < 4; ++k){
int x = dr[k] + i;
int y = dc[k] + j;
if(is_in(x, y) && ~G[x][y]){
addEdge(G[i][j], G[x][y]);
addEdge(G[x][y], G[i][j]);
}
}
}
ms(match, -1);
int cnt = 0;
for(int i = 0; i < idx; ++i) if(match[i] < 0){
ms(used, 0); if(dfs(i)) ++cnt;
}
printf("%d
", ans += idx - cnt);
return 0;
}