题意:给定上一个网络,每个边有一个容量,问你能不能从 1 到 n,使得流量为 c,如果不能,那么是不是可以修改一条边,使得达到。
析:背景就是一个网络流,如果原图能跑出来,那么就不用了,就肯定能达到,如果不能,那么修改的边肯定是最小割里的边,那么就枚举这最小割里的边,这样可能会超时,所以就优化,其中一个优化就是每次不是从0开始跑,而是在第一次的基础再走,把两次的流量加起来如果超过c了,那么就能,再就是可以每次不用跑出最大流,如果流量超过c了,就可以结束了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 100 + 10; const int maxm = 1e5 + 10; const int mod = 50007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } int c; struct Edge{ int from, to, cap, flow; }; struct Dinic{ int n, m, s, t; vector<Edge> edges; vector<int> G[maxn]; int d[maxn]; bool vis[maxn]; int cur[maxn]; void init(int n){ this-> n = n; for(int i = 0; i < n; ++i) G[i].cl; edges.cl; } void addEdge(int from, int to, int cap){ edges.pb((Edge){from, to, cap, 0}); edges.pb((Edge){to, from, 0, 0}); m = edges.sz; G[from].pb(m - 2); G[to].pb(m - 1); } bool bfs(){ ms(vis, 0); vis[s] = 1; d[s] = 0; queue<int> q; q.push(s); while(!q.empty()){ int u = q.front(); q.pop(); for(int i = 0; i < G[u].sz; ++i){ Edge &e = edges[G[u][i]]; if(!vis[e.to] && e.cap > e.flow){ vis[e.to] = 1; d[e.to] = d[u] + 1; q.push(e.to); } } } return vis[t]; } int dfs(int x, int a){ if(x == t || a == 0) return a; int flow = 0, f; for(int &i = cur[x]; i < G[x].sz; ++i){ Edge &e = edges[G[x][i]]; if(d[e.to] == d[x] + 1 && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0){ e.flow += f; edges[G[x][i]^1].flow -= f; flow += f; a -= f; if(a == 0) break; if(flow >= c) return flow; } } return flow; } int maxflow(int s, int t){ this->s = s; this->t = t; int flow = 0; while(bfs()){ ms(cur, 0); flow += dfs(s, INF); } return flow; } vector<int> mincut; void getmincut(){ mincut.cl; for(int i = 0; i < edges.sz; i += 2){ Edge &e = edges[i]; if(vis[e.from] && !vis[e.to] && e.cap > 0) mincut.push_back(i); } } void clearflow(){ for(int i = 0; i < edges.sz; ++i) edges[i].flow = 0; } void solve(int s, int t){ int flow = maxflow(s, t); if(flow >= c){ puts("possible"); return ; } c -= flow; getmincut(); for(int i = 0; i < edges.sz; ++i) edges[i].cap -= edges[i].flow; vector<P> ans; for(int i = 0; i < mincut.sz; ++i){ Edge &e = edges[mincut[i]]; e.cap = c; clearflow(); if(maxflow(s, t) >= c) ans.push_back(P(e.from, e.to)); e.cap = 0; } if(ans.empty()) printf("not possible "); else{ sort(ans.begin(), ans.end()); printf("possible option:(%d,%d)", ans[0].fi, ans[0].se); for(int i = 1; i < ans.sz; ++i) printf(",(%d,%d)", ans[i].fi, ans[i].se); printf(" "); } } }; Dinic dinic; int main(){ int kase = 0; while(scanf("%d %d %d", &n, &m, &c) == 3 && n){ dinic.init(n + 5); for(int i = 0; i < m; ++i){ int u, v, c; scanf("%d %d %d", &u, &v, &c); dinic.addEdge(u, v, c); } printf("Case %d: ", ++kase); dinic.solve(1, n); } return 0; }