zoukankan      html  css  js  c++  java
  • HDU 3897 Base Station (网络流,最大闭合子图)

    题意:给定n个带权点m条无向带权边,选一个子图,则这个子图的权值为 边权和-点权和,求一个最大的权值。

    析:把每条边都看成是一个新点,然后建图,就是一个裸的最大闭合子图。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #define debug() puts("++++");
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define all 1,n,1
    #define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<LL, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 55000 + 50;
    const int maxm = 1e6 + 5;
    const int mod = 10007;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, -1, 0, 1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    struct Edge{
      int from, to, cap, flow;
    };
    struct Dinic{
      int n, m, s, t;
      vector<Edge> edges;
      vector<int> G[maxn];
      bool vis[maxn];
      int d[maxn];
      int cur[maxn];
    
      void init(int n){
        this->n = n;
        for(int i = 0; i < n; ++i)  G[i].cl;
        edges.cl;
      }
    
      void addEdge(int from, int to, int c){
        edges.pb((Edge){from, to, c, 0});
        edges.pb((Edge){to, from, 0, 0});
        m = edges.sz;
        G[from].pb(m - 2);
        G[to].pb(m - 1);
      }
    
      bool bfs(){
        ms(vis, 0);  vis[s] = 1;  d[s] = 0;
        queue<int> q;
        q.push(s);
    
        while(!q.empty()){
          int u = q.front();  q.pop();
          for(int i = 0; i < G[u].sz; ++i){
            Edge &e = edges[G[u][i]];
            if(!vis[e.to] && e.cap > e.flow){
              d[e.to] = d[u] + 1;
              vis[e.to] = 1;
              q.push(e.to);
            }
          }
        }
        return vis[t];
      }
    
      int dfs(int u, int a){
        if(u == t || a == 0)  return a;
        int flow = 0, f;
        for(int &i = cur[u]; i < G[u].sz; ++i){
          Edge &e = edges[G[u][i]];
          if(d[e.to] == d[u] + 1 && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0){
            e.flow += f;
            edges[G[u][i]^1].flow -= f;
            flow += f;
            a -= f;
            if(a == 0)  break;
          }
        }
        return flow;
      }
    
      int maxflow(int s, int t){
        this->s = s;   this->t = t;
        int flow = 0;
        while(bfs()){ ms(cur, 0);  flow += dfs(s, INF); }
        return flow;
      }
    };
    
    Dinic dinic;
    
    int main(){
      while(scanf("%d %d", &n, &m) == 2){
        int s = 0, t = n + m + 1;
        dinic.init(t + 5);
        for(int i = 1; i <= n; ++i){
          int c;  scanf("%d", &c);
          dinic.addEdge(i, t, c);
        }
        int sum = 0;
        for(int i = 1; i <= m; ++i){
          int u, v, c;
          scanf("%d %d %d", &u, &v, &c);
          dinic.addEdge(n + i, u, INF);
          dinic.addEdge(n + i, v, INF);
          dinic.addEdge(s, n + i, c);
          sum += c;
        }
        printf("%d
    ", sum - dinic.maxflow(s, t));
      }
      return 0;
    }
    

      

  • 相关阅读:
    软件工程课程总结
    c++第五次作业
    软件工程第四次作业
    c++第四次作业
    软件工程第三次作业
    c++第三次作业
    软件工程基础第二次作业
    c++第二次作业
    c++第一次作业
    软件工程基础第一次作业
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/7676701.html
Copyright © 2011-2022 走看看