zoukankan      html  css  js  c++  java
  • HDU 1695 GCD (莫比乌斯反演)

    题意:给定区间[a, b]和[c, d]问你有多少个不同的点对(x, y),x€[a, b],y€[c, d],gcd(x, y) == k,其中不同的意思是(5, 7)和(7, 5)是一样的。

    析:一个莫比乌斯反演的入门题,G(x) = (m/i) * (n/i),但是这样是有重复的,所以我们把这个重复减去,重复的也就是给定两个区间的共同部分的数才会有重复的,所以先求出总数目,再减去共同的一半即可。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    //#define all 1,n,1
    #define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e5 + 10;
    const int maxm = 3e5 + 10;
    const int mod = 1e9 + 7;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, -1, 0, 1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    bool vis[maxn];
    int prime[maxn];
    int mu[maxn];
    
    void Moblus(){
      mu[1] = 1;
      int tot = 0;
      for(int i = 2; i < maxn; ++i){
        if(!vis[i])  prime[tot++] = i, mu[i] = -1;
        for(int j = 0; j < tot; ++j){
          if(i * prime[j] >= maxn)  break;
          vis[i*prime[j]] = 1;
          if(i % prime[j] == 0){
            mu[i*prime[j]] = 0;
            break;
          }
          else  mu[i*prime[j]] = -mu[i];
        }
      }
    }
    
    int sum[maxn];
    
    LL solve(int n, int m){
      if(n > m)  swap(n, m);
      LL ans = 0;
      for(int i = 1, det = 1; i <= n; i = det+1){
        det = min(n/(n/i), m/(m/i));
        ans += (LL)(sum[det] - sum[i-1]) * (m/i) * (n/i);
      }
      return ans;
    }
    
    int main(){
      Moblus();
      for(int i = 1; i < maxn; ++i)  sum[i] = sum[i-1] + mu[i];
      int T;  cin >> T;
      for(int kase = 1; kase <= T; ++kase){
        int a, b, c, d, k;
        scanf("%d %d %d %d %d", &a, &b, &c, &d, &k);
        printf("Case %d: ", kase);
        if(k == 0){ printf("0
    ");  continue; }
        LL ans = solve(b/k, d/k) - solve((a-1)/k, d/k) - solve((c-1)/k, b/k) + solve((a-1)/k, (c-1)/k);
        int newa = max(a, c);
        int newb = min(b, d);
        if(newa <= newb)  ans -= (solve(newb/k, newb/k) - solve((newa-1)/k, newb/k) - solve((newa-1)/k, newb/k) + solve((newa-1)/k, (newa-1)/k)) / 2;
        printf("%lld
    ", ans);
      }
      return 0;
    }
    

      

  • 相关阅读:
    [转]Lucene 性能优化带数据
    Lucene Document getBoost(float) 和 setBoost(float)
    几种Lucene.Net打开IndexReader的方式
    JSON 省市数据包括港澳
    Lucene Boost 精度表
    Dot NET 内存泄漏
    对《LINQ能不能用系列(一)数组筛选效率对比》中测试的几个问题
    售前工程师的成长一个老员工的经验之谈(三)(转载)
    yum使用简介
    Hadoop源代码分析 HDFS(转载)
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/8335589.html
Copyright © 2011-2022 走看看