zoukankan      html  css  js  c++  java
  • HDU 5468 Puzzled Elena (dfs + 莫比乌斯反演)

    题意:给定一棵带权树,求每个点与其子树结点的权值互质的个数。

    析:首先先要进行 dfs 遍历,len[i] 表示能够整除 i 的个数,在遍历的前和遍历后的差值就是子树的len值,有了这个值,就可以使用莫比斯反演了。注意如果子树的权值是1,还要加上它本身。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    //#define all 1,n,1
    #define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e5 + 5;
    const int maxm = 2e4 + 10;
    const LL mod = 100000007;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    bool vis[maxn];
    int prime[maxn], mu[maxn];
    vector<int> factor[maxn];
    void Moblus(){
      mu[1] = 1;  int tot = 0;
      for(int i = 2; i < maxn; ++i){
        if(!vis[i])  prime[tot++] = i, mu[i] = -1;
        for(int j = 0; j < tot; ++j){
          int t = i * prime[j];
          if(t >= maxn)  break;
          vis[t] = 1;
          if(i % prime[j] == 0)  break;
          mu[t] = -mu[i];
        }
      }
      for(int i = 1; i < maxn; ++i)  if(mu[i])
        for(int j = i; j < maxn; j += i)  factor[j].pb(i);
    }
    
    struct Edge{
      int to, next;
    };
    Edge edges[maxn<<1];
    int head[maxn], cnt;
    
    void addEdge(int u, int v){
      edges[cnt].to = v;
      edges[cnt].next = head[u];
      head[u] = cnt++;
    }
    
    int val[maxn], len[maxn];
    int ans[maxn];
    
    void dfs(int u, int fa){
      vector<int> tmp;
      for(int &i : factor[val[u]])  tmp.pb(len[i]);
      for(int i = head[u]; ~i; i = edges[i].next){
        int v = edges[i].to;
        if(v == fa)  continue;
        dfs(v, u);
      }
      ans[u] = 0;
      for(int i = 0; i < tmp.sz; ++i){
        int t = factor[val[u]][i];
        ans[u] += mu[t] * (len[t]-tmp[i]);
        ++len[t];
      }
      if(val[u] == 1)  ++ans[u];
      tmp.cl;
    }
    
    int main(){
      Moblus();
      int kase = 0;
      while(scanf("%d", &n) == 1){
        ms(head, -1);  cnt = 0;  ms(len, 0);
        for(int i = 1; i < n; ++i){
          int u, v;  scanf("%d %d", &u, &v);
          addEdge(u, v);
          addEdge(v, u);
        }
        for(int i = 1; i <= n; ++i)  scanf("%d", val + i);
        dfs(1, -1);
        printf("Case #%d:", ++kase);
        for(int i = 1; i <= n; ++i)  printf(" %d", ans[i]);
        printf("
    ");
      }
      return 0;
    }
    

      

  • 相关阅读:
    Solution -「HEOI/TJOI 2016」「洛谷 P2824」排序
    Solution -「国家集训队」「洛谷 P2839」Middle
    Solution -「CTSC 2018」「洛谷 P4602」混合果汁
    Solution -「CF 793G」Oleg and Chess
    Solution -「AGC 019F」「AT 2705」Yes or No
    Solution -「AGC 013E」「AT 2371」Placing Squares
    使用Spock 单元测试
    Sentinel 熔断等指标如何统计以及如何判断熔断点
    牛客多校第五场自闭
    (单调栈)Largest Rectangle in a Histogram
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/8409367.html
Copyright © 2011-2022 走看看