题意:给定一棵带权树,求每个点与其子树结点的权值互质的个数。
析:首先先要进行 dfs 遍历,len[i] 表示能够整除 i 的个数,在遍历的前和遍历后的差值就是子树的len值,有了这个值,就可以使用莫比斯反演了。注意如果子树的权值是1,还要加上它本身。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
//#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e5 + 5;
const int maxm = 2e4 + 10;
const LL mod = 100000007;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
}
bool vis[maxn];
int prime[maxn], mu[maxn];
vector<int> factor[maxn];
void Moblus(){
mu[1] = 1; int tot = 0;
for(int i = 2; i < maxn; ++i){
if(!vis[i]) prime[tot++] = i, mu[i] = -1;
for(int j = 0; j < tot; ++j){
int t = i * prime[j];
if(t >= maxn) break;
vis[t] = 1;
if(i % prime[j] == 0) break;
mu[t] = -mu[i];
}
}
for(int i = 1; i < maxn; ++i) if(mu[i])
for(int j = i; j < maxn; j += i) factor[j].pb(i);
}
struct Edge{
int to, next;
};
Edge edges[maxn<<1];
int head[maxn], cnt;
void addEdge(int u, int v){
edges[cnt].to = v;
edges[cnt].next = head[u];
head[u] = cnt++;
}
int val[maxn], len[maxn];
int ans[maxn];
void dfs(int u, int fa){
vector<int> tmp;
for(int &i : factor[val[u]]) tmp.pb(len[i]);
for(int i = head[u]; ~i; i = edges[i].next){
int v = edges[i].to;
if(v == fa) continue;
dfs(v, u);
}
ans[u] = 0;
for(int i = 0; i < tmp.sz; ++i){
int t = factor[val[u]][i];
ans[u] += mu[t] * (len[t]-tmp[i]);
++len[t];
}
if(val[u] == 1) ++ans[u];
tmp.cl;
}
int main(){
Moblus();
int kase = 0;
while(scanf("%d", &n) == 1){
ms(head, -1); cnt = 0; ms(len, 0);
for(int i = 1; i < n; ++i){
int u, v; scanf("%d %d", &u, &v);
addEdge(u, v);
addEdge(v, u);
}
for(int i = 1; i <= n; ++i) scanf("%d", val + i);
dfs(1, -1);
printf("Case #%d:", ++kase);
for(int i = 1; i <= n; ++i) printf(" %d", ans[i]);
printf("
");
}
return 0;
}