题意:给定一个 n 个数的集合,然后让你求两个值,
1。是将这个集合的数进行全排列后的每个区间的gcd之和。
2。是求这个集合的所有的子集的gcd乘以子集大小的和。
析:对于先求出len,len[i]表示能够整除 i 的的个数。
第一个值,根据排列组合,求出gcd是 i 的倍数的个数,
解释一下这个式子,先从len[i]中选出 j 个数,然后进行排列,这就是所选的区间,然后再把这 j 个数看成一个大元素,再和其他的进行排列,也就是(n-j+1)!,总体也就是排列组合。
对于第二个值,
这个式子应该很好理解,就是一个组合问题。
要提前先预处理出来上面那两个式子,处理第一个式子的时候,还要注意处理阶乘的逆元,这个可用费马小定理和快速幂来解决。
处理完上面那个式子后,再用莫比乌斯反演来处理,可以得到f1,f2
最后答案就是
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 5; const int maxm = 2e4 + 10; const LL mod = 258280327; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } bool vis[maxn]; int prime[maxn], mu[maxn]; LL fact[maxn], fa[maxn], inv[maxn]; LL fast_pow(LL a, int n){ LL res = 1; while(n){ if(n&1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } void Moblus(){ mu[1] = 1; int tot = 0; fa[1] = 2; fact[0] = fact[1] = fa[0] = 1; for(int i = 2; i < maxn; ++i){ if(!vis[i]) prime[tot++] = i, mu[i] = -1; for(int j = 0; j < tot; ++j){ int t = i * prime[j]; if(t >= maxn) break; vis[t] = 1; if(i % prime[j] == 0) break; mu[t] = -mu[i]; } fact[i] = (fact[i-1] * i) % mod; fa[i] = (fa[i-1]<<1) % mod; } inv[maxn-1] = fast_pow(fact[maxn-1], mod-2); for(int i = maxn-2; i >= 0; --i) inv[i] = inv[i+1] * (i+1) % mod; } int a[maxn], len[maxn]; LL g1[maxn], g2[maxn]; int main(){ Moblus(); while(scanf("%d", &n) == 1){ ms(len, 0); ms(a, 0); int mmax = 0; for(int i = 0; i < n; ++i){ int x; scanf("%d", &x); ++a[x]; mmax = max(mmax, x); } for(int i = 1; i <= mmax; ++i) for(int j = i; j <= mmax; j += i) len[i] += a[j]; for(int i = 1; i <= mmax; ++i){ g1[i] = g2[i] = 0; if(!len[i]) continue; for(int j = 1; j <= len[i]; ++j) g1[i] = g1[i] + fact[len[i]] * inv[len[i]-j] % mod * fact[n-j+1] % mod; g2[i] = len[i] * fa[len[i]-1] % mod; } LL ans1 = 0, ans2 = 0; for(int i = 1; i <= mmax; ++i){ LL tmp1 = 0, tmp2 = 0; for(int j = i, k = 1; j <= mmax; j += i, ++k){ tmp1 += mu[k] * g1[j]; tmp2 += mu[k] * g2[j]; } ans1 = (ans1 + tmp1 * i) % mod; ans2 = (ans2 + tmp2 * i) % mod; } ans1 = (ans1 + mod) % mod; ans2 = (ans2 + mod) % mod; if(ans1 == ans2) printf("Equal %lld ", ans1); else if(ans1 > ans2) printf("Mr. Zstu %lld ", ans1); else printf("Mr. Hdu %lld ", ans2); } return 0; }