题意:求,其中d(x) 表示 x 的约数个数。
析:其实是一个公式题,要知道一个结论
知道这个结论就好办了。
然后就可以解决这个问题了,优化就是记忆化gcd。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 2000 + 1; const int maxm = 2e4 + 10; const int mod = 1073741824; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } bool vis[maxn]; int g[maxn][maxn], mu[maxn], prime[maxn]; void Moblus(){ mu[1] = 1; int tot = 0; for(int i = 2; i <= n; ++i){ if(!vis[i]) prime[tot++] = i, mu[i] = -1; for(int j = 0; j < tot; ++j){ int t = i * prime[j]; if(t > n) break; vis[t] = 1; if(i % prime[j] == 0) break; mu[t] = -mu[i]; } } } int ggcd(int a, int b){ if(!b) return a; if(g[a][b]) return g[a][b]; return g[a][b] = g[b][a] = gcd(b, a%b); } int solve(int n, int d, int k){ int ans = 0; for(int i = 1; i <= n; ++i) if(ggcd(d*i, k) == 1) ans += n / i; return ans; } int main(){ int t; scanf("%d %d %d", &n, &m, &t); if(n > m) swap(n, m); if(n > t) swap(n, t); if(t > m) swap(m, t); Moblus(); int ans = 0; for(int i = 1; i <= t; ++i){ int tmp = 0; for(int j = 1; j <= n; ++j) if(mu[j]) tmp += mu[j] * solve(n/j, j, i) * solve(m/j, j, i); ans += t/i * tmp; } printf("%d ", (ans%mod+mod)%mod); return 0; }