zoukankan      html  css  js  c++  java
  • UVa 10870 Recurrences (矩阵快速幂)

    题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340)。a1 , a2 ..... ad。f(1), f(2) ..... f(d),求 f(n) = a1*f(n-1) + a2*f(n-2) +....+ ad*f(n-d),计算f(n) % m。

    析:很明显的矩阵快速幂,构造矩阵,

    ,然后后面的就很简单了。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    //#define all 1,n,1
    #define FOR(i,n,x)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.in", "r", stdin)
    #define freopenw freopen("out.out", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 20 + 10;
    const int maxm = 1e6 + 2;
    const LL mod = 1000000007;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    struct Matrix{
      int a[15][15], n;
      void init(){  ms(a, 0); }
      void toOne(){ FOR(i, n, 0)  a[i][i] = 1; }
      Matrix operator * (const Matrix &rhs){
        Matrix res;  res.n = n;  res.init();
        FOR(i, n, 0)  FOR(j, n, 0)  FOR(k, n, 0)
          res.a[i][j] = (res.a[i][j] + (LL)a[i][k] * rhs.a[k][j]) % m;
        return res;
      }
    };
    
    Matrix fast_pow(Matrix x, int n){
      Matrix res;  res.n = x.n;  res.init(); res.toOne();
      while(n){
        if(n&1)  res = res * x;
        x = x * x;
        n >>= 1;
      }
      return res;
    }
    
    int main(){
      int d;
      while(scanf("%d %d %d", &d, &n, &m) == 3 && n+m+d){
        Matrix x, y;  x.init();  y.init();
        x.n = y.n = d;
        for(int i = 0; i < d; ++i){
          scanf("%d", &y.a[i][0]);  
          y.a[i][0] %= m; 
        }
        for(int i = d-1; i >= 0; --i){
          scanf("%d", &x.a[0][i]);
          x.a[0][i] %= m;
        }
        if(n <= d){ printf("%d
    ", x.a[0][d-n]);  continue; }
        for(int i = 0; i + 1 < d; ++i)  y.a[i][i+1] = 1;
        Matrix ans = x * fast_pow(y, n - d);
        printf("%d
    ", ans.a[0][0]);
      }
      return 0;
    }
    

      

  • 相关阅读:
    关于需求转化的事情
    自由邮件的配置
    广告数据关联CS后台数据
    向新同事学习,如何配置邮件
    渠道映射等关系
    机器学习基本概念
    家政业务系统常识
    SAP APO
    SAP Web Dynpro
    SAP Web Dynpro-监视应用程序
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/8574498.html
Copyright © 2011-2022 走看看