题意:给定 x,n,r,满足 r2 ≡ x mod(n) ,求在 0 ~ n 内满足 rr2 ≡ x mod(n) 的所有的 rr。
析:很明显直接是肯定不行了,复杂度太高了。
r2 ≡ x mod(n) (1)
rr2 ≡ x mod(n) (2)
用 (2)- (1)得到
rr2 - r2 ≡ 0 mod (n)
(rr + r)*(rr - r) ≡ 0 mod (n),
可以得到
(rr + r)*(rr - r) = k * n。
假设 n = a * b,
那么 可以知道 (rr + r) % a == 0 && (rr - r) % b == 0 || (rr + r) % b == 0 && (rr - r) % a == 0,
也就是
rr + r = k1 * a (3)
rr - r = k2 * b (4)
(3)-(4)得
k1 * a + k2 * b = 2 * r,
这是一个方程,r 是已知的,然后 a 和 b,可以通过枚举 n 的因子得到,这样就可以解这方程,解出 k1 代入(3),就能得到 rr。
就解决了这个问题,还有这个可能会产生重复的解,所以可以用 set 。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define be begin()
#define ed end()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
//#define aLL 1,n,1
#define FOR(i,n,x) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.in", "r", stdin)
#define freopenw freopen("out.out", "w", stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int maxn = 300 + 20;
const int maxm = 76543;
const int mod = 1e9 + 9;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
}
inline int readInt(){ int x; scanf("%d", &x); return x; }
void exgcd(int a, int b, LL &d, LL &x, LL &y){
if(!b){ d = a; x = 1; y = 0; }
else{ exgcd(b, a%b, d, y, x); y -= (a/b) * x; }
}
int main(){
int x, r, kase = 0;
while(scanf("%d %d %d", &x, &n, &r) == 3 && x + n + r){
vector<P> fact;
int t = sqrt(n + 1.);
for(int i = 1; i <= t; ++i) if(n % i == 0) fact.pb(P(i, n/i)), fact.pb(P(n/i, i));
set<int> sets;
sets.insert(r);
LL k1, k2, d;
for(int i = 0; i < fact.sz; ++i){
int a = fact[i].fi;
int b = fact[i].se;
exgcd(a, b, d, k1, k2);
if(2 * r % d) continue;
int bb = abs(b / d);
LL K1 = k1 * 2LL * r / d;
k1 = (K1 % bb + bb) % bb;
k2 = k1;
while(1){
LL rr = k1 * a - r;
if(rr >= 0){
if(rr >= n) break;
sets.insert(rr);
}
k1 += bb;
}
while(1){
LL rr = k2 * a - r;
if(rr <= n){
if(rr < 0) break;
sets.insert(rr);
}
k2 -= bb;
}
}
printf("Case %d:", ++kase);
for(auto &it: sets) printf(" %d", it);
printf("
");
}
return 0;
}