zoukankan      html  css  js  c++  java
  • HDU 6346 整数规划 (最佳完美匹配)

    整数规划

    Time Limit: 5500/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 435    Accepted Submission(s): 144


    Problem Description
    度度熊有一个可能是整数规划的问题:

    给定 n×n 个整数 ai,j(1i,jn),要找出 2n 个整数 x1,x2,…,xn,y1,y2,…,yn 在满足 xi+yjai,j(1i,jn) 的约束下最大化目标函数 ni=1xi+ni=1yi

    你需要帮他解决这个整数规划问题,并给出目标函数的最大值。
     
    Input
    第一行包含一个整数 T,表示有 T 组测试数据。

    接下来依次描述 T 组测试数据。对于每组测试数据:

    第一行包含一个整数 n,表示该整数规划问题的规模。

    接下来 n 行,每行包含 n 个整数,其中第 i 行第 j 列的元素是 ai,j

    保证 1T201n200109ai,j109(1i,jn)
     
    Output
    对于每组测试数据,输出一行信息 "Case #x: y"(不含引号),其中 x 表示这是第 x 组测试数据,y 表示目标函数的最大值,行末不要有多余空格。
     
    Sample Input
    2 1 0 2 1 2 3 4
     
    Sample Output
    Case #1: 0 Case #2: 5
     
    Source
     
    Recommend
    chendu
     
    Statistic | Submit | Discuss | Note

    析:根据题目给定的条件 xi+yjai,j(1i,jn),这就是求最佳完全匹配(最小权值)的可行顶标的定义,所以直接就是一个裸的 KM 算法,因为是最小权值,所以只要把权值取反即可。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <sstream>
    #include <list>
    #include <assert.h>
    #include <bitset>
    #include <numeric>
    #define debug() puts("++++")
    #define gcd(a, b) __gcd(a, b)
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define fi first
    #define se second
    #define pb push_back
    #define sqr(x) ((x)*(x))
    #define ms(a,b) memset(a, b, sizeof a)
    #define sz size()
    #define be begin()
    #define ed end()
    #define pu push_up
    #define pd push_down
    #define cl clear()
    #define lowbit(x) -x&x
    //#define all 1,n,1
    #define FOR(i,n,x)  for(int i = (x); i < (n); ++i)
    #define freopenr freopen("in.in", "r", stdin)
    #define freopenw freopen("out.out", "w", stdout)
    using namespace std;
     
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const LL LNF = 1e17;
    const double inf = 1e20;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 200 + 10;
    const int maxm = 1e6 + 10;
    const LL mod = 998244353LL;
    const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
    const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c) {
      return r >= 0 && r < n && c >= 0 && c < m;
    }
    inline int readInt(){ int x;  scanf("%d", &x);  return x; }
    
    LL w[maxn][maxn], x[maxn], y[maxn], slack[maxn];
    int prev_x[maxn], prev_y[maxn], son_y[maxn], par[maxn];
    int lx, ly;
    
    void adjust(int v){
      son_y[v] = prev_y[v];
      if(prev_x[son_y[v]] != -2)  adjust(prev_x[son_y[v]]);
    }
    
    bool find(int v){
      for(int i = 0; i < n; ++i)  if(prev_y[i] == -1){
        if(slack[i] > x[v] + y[i] - w[v][i]){
          slack[i] = x[v] + y[i] - w[v][i];
          par[i] = v;
        }
        if(x[v] + y[i] == w[v][i]){
          prev_y[i] = v;
          if(son_y[i] == -1){
            adjust(i);  return true;
          }
          if(prev_x[son_y[i]] != -1)  continue;
          prev_x[son_y[i]] = i;
          if(find(son_y[i]))  return true;
        }
      }
      return false;
    }
    
    LL KM(){
      ms(son_y, -1);  ms(y, 0);
      for(int i = 0; i < n; ++i){
        x[i] = 0;
        for(int j = 0; j < n; ++j)
          x[i] = max(x[i], w[i][j]);
      }
      bool flag;
      for(int i = 0; i < n; ++i){
        for(int j = 0; j < n; ++j){
          prev_x[j] = prev_y[j] = -1;
          slack[j] = LNF;
        }
        prev_x[i] = -2;
        if(find(i))  continue;
        flag = false;
        while(!flag){
          LL m = LNF;
          for(int j = 0; j < n; ++j)  
            if(prev_y[j] == -1)  m = min(m, slack[j]);
          for(int j = 0; j < n; ++j){
            if(prev_x[j] != -1)  x[j] -= m;
            if(prev_y[j] != -1)  y[j] += m;
            else  slack[j] -= m;
          }
          for(int j = 0; j < n; ++j)  if(prev_y[j] == -1 && !slack[j]){
            prev_y[j] = par[j];
            if(son_y[j] == -1){
              adjust(j);
              flag = true;
              break;
            }
            prev_x[son_y[j]] = j;
            if(find(son_y[j])){
              flag = true;  break;
            }
          }
        }
      }
      LL ans = 0;
      for(int i = 0; i < n; ++i)  ans += w[son_y[i]][i];
      return ans;
    }
    
    int main(){
      int T;  cin >> T;
      for(int kase = 1; kase <= T; ++kase){
        scanf("%d", &n);
        for(int i = 0; i < n; ++i)
          for(int j = 0; j < n; w[i][j] = -w[i][j], ++j)
            scanf("%I64d", &w[i][j]);
        printf("Case #%d: %I64d
    ", kase, -KM());
      }
      return 0;
    }
    

      

  • 相关阅读:
    WINDOWS黑客基础(5):利用内存来进行获取计算结果
    WINDOWS黑客基础(4):查找进程运行的基址
    WINDOWS黑客基础(3):注入代码
    shell中[[]]和[]的主要区别
    sed的实际用法举例
    linux oracle profile配置
    转 -Linux 自检和 SystemTap (强大的内核调试工具)---包含下载地址
    【转】DBMS_STATS.GATHER_TABLE_STATS详解 2012-04-22 09:20:10
    Linux中的15个‘echo’ 命令实例
    BEA-WEBLOGIC ---http://www.beansoft.biz/weblogic/docs92/index.html
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/9482677.html
Copyright © 2011-2022 走看看