整数规划
Time Limit: 5500/5000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 435 Accepted Submission(s): 144
Problem Description
度度熊有一个可能是整数规划的问题:
给定 n×n 个整数 ai,j(1≤i,j≤n),要找出 2n 个整数 x1,x2,…,xn,y1,y2,…,yn 在满足 xi+yj≤ai,j(1≤i,j≤n) 的约束下最大化目标函数 ∑ni=1xi+∑ni=1yi,
你需要帮他解决这个整数规划问题,并给出目标函数的最大值。
给定 n×n 个整数 ai,j(1≤i,j≤n),要找出 2n 个整数 x1,x2,…,xn,y1,y2,…,yn 在满足 xi+yj≤ai,j(1≤i,j≤n) 的约束下最大化目标函数 ∑ni=1xi+∑ni=1yi,
你需要帮他解决这个整数规划问题,并给出目标函数的最大值。
Input
第一行包含一个整数 T,表示有 T 组测试数据。
接下来依次描述 T 组测试数据。对于每组测试数据:
第一行包含一个整数 n,表示该整数规划问题的规模。
接下来 n 行,每行包含 n 个整数,其中第 i 行第 j 列的元素是 ai,j。
保证 1≤T≤20,1≤n≤200,−109≤ai,j≤109(1≤i,j≤n)。
接下来依次描述 T 组测试数据。对于每组测试数据:
第一行包含一个整数 n,表示该整数规划问题的规模。
接下来 n 行,每行包含 n 个整数,其中第 i 行第 j 列的元素是 ai,j。
保证 1≤T≤20,1≤n≤200,−109≤ai,j≤109(1≤i,j≤n)。
Output
对于每组测试数据,输出一行信息 "Case #x: y"(不含引号),其中 x 表示这是第 x 组测试数据,y 表示目标函数的最大值,行末不要有多余空格。
Sample Input
2
1
0
2
1 2
3 4
Sample Output
Case #1: 0
Case #2: 5
Source
Recommend
chendu
析:根据题目给定的条件 xi+yj≤ai,j(1≤i,j≤n),这就是求最佳完全匹配(最小权值)的可行顶标的定义,所以直接就是一个裸的 KM 算法,因为是最小权值,所以只要把权值取反即可。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #include <numeric> #define debug() puts("++++") #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define be begin() #define ed end() #define pu push_up #define pd push_down #define cl clear() #define lowbit(x) -x&x //#define all 1,n,1 #define FOR(i,n,x) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.in", "r", stdin) #define freopenw freopen("out.out", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const LL LNF = 1e17; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 200 + 10; const int maxm = 1e6 + 10; const LL mod = 998244353LL; const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1}; const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } inline int readInt(){ int x; scanf("%d", &x); return x; } LL w[maxn][maxn], x[maxn], y[maxn], slack[maxn]; int prev_x[maxn], prev_y[maxn], son_y[maxn], par[maxn]; int lx, ly; void adjust(int v){ son_y[v] = prev_y[v]; if(prev_x[son_y[v]] != -2) adjust(prev_x[son_y[v]]); } bool find(int v){ for(int i = 0; i < n; ++i) if(prev_y[i] == -1){ if(slack[i] > x[v] + y[i] - w[v][i]){ slack[i] = x[v] + y[i] - w[v][i]; par[i] = v; } if(x[v] + y[i] == w[v][i]){ prev_y[i] = v; if(son_y[i] == -1){ adjust(i); return true; } if(prev_x[son_y[i]] != -1) continue; prev_x[son_y[i]] = i; if(find(son_y[i])) return true; } } return false; } LL KM(){ ms(son_y, -1); ms(y, 0); for(int i = 0; i < n; ++i){ x[i] = 0; for(int j = 0; j < n; ++j) x[i] = max(x[i], w[i][j]); } bool flag; for(int i = 0; i < n; ++i){ for(int j = 0; j < n; ++j){ prev_x[j] = prev_y[j] = -1; slack[j] = LNF; } prev_x[i] = -2; if(find(i)) continue; flag = false; while(!flag){ LL m = LNF; for(int j = 0; j < n; ++j) if(prev_y[j] == -1) m = min(m, slack[j]); for(int j = 0; j < n; ++j){ if(prev_x[j] != -1) x[j] -= m; if(prev_y[j] != -1) y[j] += m; else slack[j] -= m; } for(int j = 0; j < n; ++j) if(prev_y[j] == -1 && !slack[j]){ prev_y[j] = par[j]; if(son_y[j] == -1){ adjust(j); flag = true; break; } prev_x[son_y[j]] = j; if(find(son_y[j])){ flag = true; break; } } } } LL ans = 0; for(int i = 0; i < n; ++i) ans += w[son_y[i]][i]; return ans; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d", &n); for(int i = 0; i < n; ++i) for(int j = 0; j < n; w[i][j] = -w[i][j], ++j) scanf("%I64d", &w[i][j]); printf("Case #%d: %I64d ", kase, -KM()); } return 0; }