zoukankan      html  css  js  c++  java
  • HDU1086

    You can Solve a Geometry Problem too

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 8452    Accepted Submission(s): 4125


    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point.
     
    Input
    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending.
    A test case starting with 0 terminates the input and this test case is not to be processed.
     
    Output
    For each case, print the number of intersections, and one line one case.
     
    Sample Input
    2
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.00
    3
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.000
    0.00 0.00 1.00 0.00
    0
     
    Sample Output
    1
    3
     
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 #include <stack>
     5 #include <queue>
     6 #include <map>
     7 #include <set>
     8 #include <vector>
     9 #include <math.h>
    10 #include <algorithm>
    11 using namespace std;
    12 const double pi = acos(-1.0);
    13 const int INF = 0x3f3f3f3f;
    14 
    15 struct Line
    16 {
    17     double x1,y1,x2,y2;
    18 }node[105];
    19 
    20 bool solve(Line a, Line b)//叉积判断两线段是否相交
    21 {
    22     if (((a.x1-b.x1)*(a.y2-b.y1)-(a.x2-b.x1)*(a.y1-b.y1))*((a.x1-b.x2)*(a.y2-b.y2)-(a.x2-b.x2)*(a.y1-b.y2))>0)
    23     return false;
    24     if (((b.x1-a.x1)*(b.y2-a.y1)-(b.x2-a.x1)*(b.y1-a.y1))*((b.x1-a.x2)*(b.y2-a.y2)-(b.x2-a.x2)*(b.y1-a.y2))>0)
    25     return false;
    26     return true;
    27 }
    28 
    29 int main ()
    30 {
    31     int n;
    32     while (scanf ("%d",&n),n)
    33     {
    34         for (int i=0; i<n; i++)
    35         scanf ("%lf%lf%lf%lf",&node[i].x1,&node[i].y1,&node[i].x2,&node[i].y2);
    36         int cnt = 0;
    37         for (int i=0; i<n; i++)
    38         {
    39             for (int j=i+1; j<n; j++)
    40             {
    41                 if (solve(node[i], node[j]))
    42                 cnt++;
    43             }
    44         }
    45         printf ("%d
    ",cnt);
    46     }
    47     return 0;
    48 }
    View Code
  • 相关阅读:
    GIS的核心价值——服务
    Arcgis Add-In开发入门实例
    Arcgis for Androd API开发系列教程(一)——地图显示与GPS定位
    Spring
    字体大小对照换算表
    属性和字段的区别
    sqlDataAdapter和SqlCommand的区别
    C# 连接SQL Server数据库的几种方式--server+data source等方式
    c# using的作用
    random
  • 原文地址:https://www.cnblogs.com/dxd-success/p/4507898.html
Copyright © 2011-2022 走看看