一、题目
二、分析
给定一个模数,一串字符串,字符串长度为N,相当于是N个方程的答案,而这N个方程中有N个未知数,要求的就是这N个未知数的值,很显然的高斯消元,遇到模数和除法,用逆元就好。
三、AC代码
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <vector> #include <cmath> using namespace std; #define ll long long #define Min(a,b) ((a)>(b)?(b):(a)) #define Max(a,b) ((a)>(b)?(a):(b)) const int maxn = 1e2; int p; char s[maxn]; int a[maxn][maxn], x[maxn]; int n, equ, var; int gcd(int a, int b) { return b == 0 ? a : gcd(b, a%b); } int lcm(int a, int b) { return a / gcd(a, b) * b; } int inv(int a, int m) { if(a == 1) return 1; return inv(m%a, m) * (m - m/a)%m; } int getInt(char c) { if(c == '*') return 0; else return c - 'a' + 1; } int Gauss() { int k, col, max_r; for(k = 0, col = 0; k < equ && col < var; k++, col++) { max_r = k; for(int i = k + 1; i < equ; i++) { if(fabs(a[i][col]) > fabs(a[max_r][col])) max_r = i; } if(a[max_r][col] == 0) { k--; continue; } if(max_r != k) { for(int i = col; i < (var + 1); i++) { swap(a[max_r][i], a[k][i]); } } //消元 for(int i = k + 1; i < equ; i++) { if(a[i][col] != 0) { int LCM = lcm( fabs(a[i][col]), fabs(a[k][col])); int ta = LCM / fabs(a[i][col]); int tb = LCM / fabs(a[k][col]); //异号 if(a[i][col]*a[k][col] < 0) tb = -tb; for(int j = col; j < (var + 1); j++) { a[i][j] = ((a[i][j] * ta - a[k][j] * tb) % p + p)%p; a[i][col] = 0; } } } } for(int i = k; i < equ; i++) { if(a[i][var+1] != 0) return -1; //无解 } //多解 if(k < var) return var - k; for(int i = var - 1; i >= 0; i--) { int tmp = a[i][var]; for(int j = i + 1; j < var ;j++) { if(a[i][j] != 0) { tmp -= a[i][j] * x[j]; } tmp = (tmp % p + p) % p; } x[i] = (tmp * inv(a[i][i], p)) % p; } } void solve() { equ = n, var = n; int res = Gauss(); for(int i = 0; i < n; i++) { if(i) printf(" "); printf("%d", x[i]); } printf(" "); } int main() { int T; // freopen("input.txt", "r", stdin); // freopen("out.txt", "w", stdout); scanf("%d", &T); while(T--) { scanf("%d %s", &p, s); n = strlen(s); memset(a, 0, sizeof(a)); for(int i = 0; i < n; i++) { int res = 1; for(int j = 0; j < n; j++) { a[i][j] = res; res = res * (i + 1) % p; } a[i][n] = getInt(s[i]); } solve(); } return 0; }