zoukankan      html  css  js  c++  java
  • UCF Local Programming Contest 2018 Circle Meets Square (圆与正方形位置关系的判断)

    We all know that you can’t put a round peg in a square hole. Asking you to do so in this contestwould be cruel and unusual punishment, which is banned by the Eighth Amendment to the UnitedStates Constitution. But, perhaps a more reasonable problem that the Framers of the Constitutionnever thought about is determining if a given circle and square have an intersection of positivearea (overlap), or touch (share a point in common), or don’t touch at all. 

    The Framers of the US Constitution and the UCF Programming Team coaches would like to know,given a circle and a square, do the two overlap in some positive area, touch, or don’t touch at all.Help them out by writing a program to solve the problem! 

    The Problem:

    Given the description of a square and circle in the Cartesian plane, determine if the intersectionbetween the two has positive area (overlap), is a single point (touches) or doesn’t exist.

    The Input: 

    The first line of input contains three integers: x (-1,000 ≤ x ≤ 1,000), y (-1,000 ≤ x ≤ 1,000), and r(0 < r ≤ 1,000), representing the x and y coordinates and radius, respectively of the circle. 

    The second line of input contains three integers: tx (-1,000 ≤ tx < 1,000), ty (-1,000 ≤ ty < 1,000),and s (0 < s ≤ 1,000), where (tx, ty) represents the coordinates of the bottom left corner of the squareand s represents the side length of the square. The square’s top right corner is (tx+s, ty+s), so thatits sides are parallel to the x and y axes. 

    The Output: 

    If the circle and square don’t touch, output 0 (zero). If they touch at a single point, output 1(one). If they overlap in positive area, output 2 (two).

    题目大意与分析

    本题是判断圆与正方形的关系,是相交、只有一个点接触还是相离

    对于相交(包括包含)的判断,有两种情况:正方形四个顶点有至少一个在圆内 或者 圆的上下左右四个点与圆心这五个点至少有一个在正方形内

    对于只有一个点接触,是在不是上述关系的基础上,如果正方形的四个顶点有一个在圆上,或者圆的上下左右四个点有一个点在正方形上

    其余情况为相离

    #include<bits/stdc++.h>
    
    using namespace std;
    
    int zx,zy,sx,sy,d,r;
    
    int incirle(int x,int y)        //判断点在圆内 用点到圆心距离判断 
    {
        if(((x-sx)*(x-sx)+(y-sy)*(y-sy))<(r*r))
        {
            return 1;
        }
        else
        {
            return 0;
        }
    } 
    
    int oncirle(int x,int y)        //判断点在圆上 用点到圆心距离判断 
    {
        if(((x-sx)*(x-sx)+(y-sy)*(y-sy))==(r*r))
        {
            return 1;
        }
        else
        {
            return 0;
        }
    } 
    
    int insquare(int x,int y)     //判断点在正方形内 用坐标关系判断 
    {
        if((x>zx)&&(x<zx+d)&&(y>zy)&&(y<zy+d))
        {
            return 1;
        }
        else
        {
            return 0;
        }
    }
    
    int onsquare(int x,int y)     //判断点在正方形上 用坐标关系判断 
    {
        if(((x==zx)&&(y>=zy)&&(y<=zy+d))||((x==zx+d)&&(y>=zy)&&(y<=zy+d))||((y==zy)&&(x>=zx)&&(x<=zx+d))||((y==zy+d)&&(x>=zx)&&(x<=zx+d)))
        {
            return 1;
        }
        else
        {
            return 0;
        }
    }
    
    int pd2()
    {
        if(incirle(zx,zy)||incirle(zx+d,zy)||incirle(zx,zy+d)||incirle(zx+d,zy+d))  //某个顶点在圆内 
        {
            return 1;
        }
        if(insquare(sx,sy)||insquare(sx+r,sy)||insquare(sx-r,sy)||insquare(sx,sy+r)||insquare(sx,sy-r)) //圆的点在正方形内 
        {
            return 1;
        }
        else
        {
            return 0;
        }
    }
    
    
    int pd1()
    {
        if(oncirle(zx,zy)||oncirle(zx+d,zy)||oncirle(zx,zy+d)||oncirle(zx+d,zy+d))   //点在圆上
        {
            return 1;
        }
        if(onsquare(sx+r,sy)||onsquare(sx-r,sy)||onsquare(sx,sy+r)||onsquare(sx,sy-r))  //点在正方形上 
        {
            return 1; 
        }
        else
        {
            return 0;
        }
    }
    
    
    int main()
    {
        cin>>sx>>sy>>r;
        cin>>zx>>zy>>d;
        if(pd2())
        cout<<"2"<<endl;
        else if(pd1())
        cout<<"1"<<endl;
        else
        cout<<"0"<<endl;
     } 
  • 相关阅读:
    [CSS] prefers-reduced-motion
    [VSCode] Adding Custom Syntax Highlighting to a Theme in VSCode
    Subversion/Git/ReviewBoard工作流程
    oracle hints
    Node.js学习(10)----文件系统fs
    网络子系统41_inet_peer平衡二叉树的删除
    由链表初始化看C语言的二级指针
    挣值管理不是搞数字游戏(4)——让挣值管理实用!
    关于数据库一致改关闭下redo日志文件丢失的处理办法的总结
    Android 操作系统的内存回收机制
  • 原文地址:https://www.cnblogs.com/dyhaohaoxuexi/p/12575238.html
Copyright © 2011-2022 走看看