zoukankan      html  css  js  c++  java
  • Tourists

    Tourists

    时间限制: 5 Sec  内存限制: 64 MB

    题目描述

    In Tree City, there are n tourist attractions uniquely labeled 1 to n. The attractions are connected by a set of n − 1 bidirectional roads in such a way that a tourist can get from any attraction to any other using some path of roads.
    You are a member of the Tree City planning committee. After much research into tourism, your committee has discovered a very interesting fact about tourists: they LOVE number theory! A tourist who visits an attraction with label x will then visit another attraction with label y if y > x and y is a multiple of x. Moreover, if the two attractions are not directly connected by a road thetourist will necessarily visit all of the attractions on the path connecting x and y, even if they aren’t multiples of x. The number of attractions visited includes x and y themselves. Call this the length of a path.
    Consider this city map:
    Here are all the paths that tourists might take, with the lengths for each:
    1 → 2 = 4, 1 → 3 = 3, 1 → 4 = 2, 1 → 5 = 2, 1 → 6 = 3, 1 → 7 = 4,
    1 → 8 = 3, 1 → 9 = 3, 1 → 10 = 2, 2 → 4 = 5, 2 → 6 = 6, 2 → 8 = 2,
    2 → 10 = 3, 3 → 6 = 3, 3 → 9 = 3, 4 → 8 = 4, 5 → 10 = 3
    To take advantage of this phenomenon of tourist behavior, the committee would like to determine the number of attractions on paths from an attraction x to an attraction y such that y > x and y is a multiple of x. You are to compute the sum of the lengths of all such paths. For the example above, this is: 4 + 3 + 2 + 2 + 3 + 4 + 3 + 3 + 2 + 5 + 6 + 2 + 3 + 3 + 3 + 4 + 3 = 55.

    输入

    Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. The first line of input will consist of an integer n (2 ≤ n ≤ 200,000) indicating the number of attractions. Each of the following n−1 lines will consist of a pair of space-separated
    integers i and j (1 ≤ i < j ≤ n), denoting that attraction i and attraction j are directly connected by a road. It is guaranteed that the set of attractions is connected.

    输出

    Output a single integer, which is the sum of the lengths of all paths between two attractions x and y such that y > x and y is a multiple of x.

    样例输入

    10
    3 4
    3 7
    1 4
    4 6
    1 10
    8 10
    2 8
    1 5
    4 9
    

    样例输出

    55
    分析:LCA裸题;
       注意dfs层数太深会爆,所以需要手写栈;
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <map>
    #include <unordered_map>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <list>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define vi vector<int>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    #define pii pair<int,int>
    #define Lson L, mid, ls[rt]
    #define Rson mid+1, R, rs[rt]
    #define sys system("pause")
    const int maxn=2e5+10;
    using namespace std;
    ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    inline ll read()
    {
        ll x=0;int f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    int n,m,k,t,p[maxn<<1],all,dep[maxn],tot,h[maxn],vis[maxn<<1],vis1[maxn],fa[maxn],st[20][maxn<<1];
    void init()
    {
        for(int i=2;i<=all;i++)p[i]=1+p[i>>1];
        for(int i=1;i<=19;i++)
            for(int j=1;(j+(1<<i)-1)<=(ll)all;j++)
                st[i][j]=min(st[i-1][j],st[i-1][j+(1<<(i-1))]);
    }
    int query(int l,int r)
    {
        int x=p[r-l+1];
        return min(st[x][l],st[x][r-(1<<x)+1]);
    }
    struct node
    {
        int to,nxt;
    }e[maxn<<1];
    void add(int x,int y)
    {
        tot++;
        e[tot].to=y;
        e[tot].nxt=h[x];
        h[x]=tot;
    }
    stack<int>S;
    void dfs()
    {
        S.push(1);
        while(!S.empty())
        {
            int now = S.top();
            if(vis1[now] == 1)// if node is gray, then color black
            {
                vis1[now] = 2;
                st[0][++all]=dep[fa[now]];
                // do things after dfs children.
                S.pop();
            }
            else if(vis1[now] == 0)// if node is white, then color gray
            {
                vis1[now] = 1;
                st[0][++all]=dep[now];
                vis[now]=all;
                // do things before dfs children.
                for(int i=h[now];i;i=e[i].nxt)
                {
                    int to=e[i].to;
                    if(!vis1[to])
                    {
                        dep[to]=dep[now]+1;
                        fa[to]=now;
                        S.push(to);
                    }
                }
            }
        }
    }
    ll ans;
    int main()
    {
        int i,j;
        //freopen("in.txt","r",stdin);
        while(~scanf("%d",&n))
        {
            ans=0;
            all=0;
            tot=0;
            memset(dep,0,sizeof(dep));
            memset(vis,0,sizeof(vis));
            memset(h,0,sizeof(h));
            memset(p,0,sizeof(p));
            memset(vis1,0,sizeof(vis1));
            rep(i,1,n-1)
            {
                int a,b;
                scanf("%d%d",&a,&b);
                add(a,b),add(b,a);
            }
            dfs();
            init();
            for(i=1;i<=n;i++)
            {
                for(j=i*2;j<=n;j+=i)
                {
                    ans+=dep[i]+dep[j]-2*query(min(vis[i],vis[j]),max(vis[i],vis[j]))+1;
                }
            }
            printf("%lld
    ",ans);
        }
        //system("Pause");
        return 0;
    }
  • 相关阅读:
    LeetCode 120:三角形最小路径和
    守护进程
    G711时间戳增量和数据包大小的关系
    H264防止竞争机制
    硬编码帧率错误导致的浏览器不能播放的问题
    GCC inline
    单例模式的双检锁的隐患和优化
    Java中异常捕获子类异常捕获在父类异常前面,即小范围先被捕获
    线程运行流程图
    将二维数组转为稀疏数组
  • 原文地址:https://www.cnblogs.com/dyzll/p/5996349.html
Copyright © 2011-2022 走看看