zoukankan      html  css  js  c++  java
  • Chloe and pleasant prizes

    Chloe and pleasant prizes
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Generous sponsors of the olympiad in which Chloe and Vladik took part allowed all the participants to choose a prize for them on their own. Christmas is coming, so sponsors decided to decorate the Christmas tree with their prizes.

    They took n prizes for the contestants and wrote on each of them a unique id (integer from 1 to n). A gift i is characterized by integerai — pleasantness of the gift. The pleasantness of the gift can be positive, negative or zero. Sponsors placed the gift 1 on the top of the tree. All the other gifts hung on a rope tied to some other gift so that each gift hung on the first gift, possibly with a sequence of ropes and another gifts. Formally, the gifts formed a rooted tree with n vertices.

    The prize-giving procedure goes in the following way: the participants come to the tree one after another, choose any of the remaining gifts and cut the rope this prize hang on. Note that all the ropes which were used to hang other prizes on the chosen one are not cut. So the contestant gets the chosen gift as well as the all the gifts that hang on it, possibly with a sequence of ropes and another gifts.

    Our friends, Chloe and Vladik, shared the first place on the olympiad and they will choose prizes at the same time! To keep themselves from fighting, they decided to choose two different gifts so that the sets of the gifts that hang on them with a sequence of ropes and another gifts don't intersect. In other words, there shouldn't be any gift that hang both on the gift chosen by Chloe and on the gift chosen by Vladik. From all of the possible variants they will choose such pair of prizes that the sum of pleasantness of all the gifts that they will take after cutting the ropes is as large as possible.

    Print the maximum sum of pleasantness that Vladik and Chloe can get. If it is impossible for them to choose the gifts without fighting, print Impossible.

    Input

    The first line contains a single integer n (1 ≤ n ≤ 2·105) — the number of gifts.

    The next line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — the pleasantness of the gifts.

    The next (n - 1) lines contain two numbers each. The i-th of these lines contains integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi) — the description of the tree's edges. It means that gifts with numbers ui and vi are connected to each other with a rope. The gifts' ids in the description of the ropes can be given in arbirtary order: vi hangs on ui or ui hangs on vi.

    It is guaranteed that all the gifts hang on the first gift, possibly with a sequence of ropes and another gifts.

    Output

    If it is possible for Chloe and Vladik to choose prizes without fighting, print single integer — the maximum possible sum of pleasantness they can get together.

    Otherwise print Impossible.

    Examples
    input
    8
    0 5 -1 4 3 2 6 5
    1 2
    2 4
    2 5
    1 3
    3 6
    6 7
    6 8
    output
    25
    input
    4
    1 -5 1 1
    1 2
    1 4
    2 3
    output
    2
    input
    1
    -1
    output
    Impossible
    分析:题意是找两个不存在包含关系的权值的最大和;
       只需dfs找出最大值和次大值即可;
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #include <list>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define vi vector<int>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    #define pii pair<int,int>
    #define Lson L, mid, ls[rt]
    #define Rson mid+1, R, rs[rt]
    #define sys system("pause")
    #define intxt freopen("in.txt","r",stdin)
    const int maxn=2e5+10;
    using namespace std;
    ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    const int dis[][2]={1,0,0,1,-1,0,0,-1};
    inline ll read()
    {
        ll x=0;int f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    int n,m,k,t;
    ll ans,ma,p[maxn];
    vi e[maxn];
    void dfs(int now,int pre)
    {
        for(int x:e[now])
        {
            if(x==pre)continue;
            dfs(x,now);
            p[now]+=p[x];
        }
    }
    void dfs1(int now,int pre)
    {
        for(int x:e[now])
        {
            if(x==pre)continue;
            if(ma!=-(1LL<<63))ans=max(ans,ma+p[x]);
            dfs1(x,now);
        }
        ma=max(ma,p[now]);
    }
    int main()
    {
        int i,j;
        ans=ma=-(1LL<<63);
        scanf("%d",&n);
        rep(i,1,n)p[i]=read();
        rep(i,1,n-1)scanf("%d%d",&j,&k),e[j].pb(k),e[k].pb(j);
        dfs(1,0);
        dfs1(1,0);
        if(ans!=-(1LL<<63))printf("%lld
    ",ans);
        else puts("Impossible");
        //system("Pause");
        return 0;
    }
  • 相关阅读:
    Spring MVC的路径匹配规则 Ant-style
    mybatis的mapper参数传递
    mybatis映射文件的使用(一),工程目录结构、源代码和数据库
    mappers标签引入映射器的四种方式
    Java语言定义的线程状态分析
    MySQL中varchar最大长度是多少
    mysql中字符串类型char(n)和varchar(n)的区别
    CORS解决跨域问题的几种方法
    使用自定义注解和springAOP捕获Service层异常,并处理自定义异常
    自定义HttpMessageConverter实现RestTemplate的exchange方法返回自定义格式数据
  • 原文地址:https://www.cnblogs.com/dyzll/p/6193935.html
Copyright © 2011-2022 走看看