zoukankan      html  css  js  c++  java
  • Pavel and barbecue

    Pavel and barbecue
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Pavel cooks barbecue. There are n skewers, they lay on a brazier in a row, each on one of n positions. Pavel wants each skewer to be cooked some time in every of n positions in two directions: in the one it was directed originally and in the reversed direction.

    Pavel has a plan: a permutation p and a sequence b1, b2, ..., bn, consisting of zeros and ones. Each second Pavel move skewer on position i to position pi, and if bi equals 1 then he reverses it. So he hope that every skewer will visit every position in both directions.

    Unfortunately, not every pair of permutation p and sequence b suits Pavel. What is the minimum total number of elements in the given permutation p and the given sequence b he needs to change so that every skewer will visit each of 2n placements? Note that after changing the permutation should remain a permutation as well.

    There is no problem for Pavel, if some skewer visits some of the placements several times before he ends to cook. In other words, a permutation p and a sequence b suit him if there is an integer k (k ≥ 2n), so that after k seconds each skewer visits each of the 2nplacements.

    It can be shown that some suitable pair of permutation p and sequence b exists for any n.

    Input

    The first line contain the integer n (1 ≤ n ≤ 2·105) — the number of skewers.

    The second line contains a sequence of integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the permutation, according to which Pavel wants to move the skewers.

    The third line contains a sequence b1, b2, ..., bn consisting of zeros and ones, according to which Pavel wants to reverse the skewers.

    Output

    Print single integer — the minimum total number of elements in the given permutation p and the given sequence b he needs to change so that every skewer will visit each of 2n placements.

    Examples
    input
    4
    4 3 2 1
    0 1 1 1
    output
    2
    input
    3
    2 3 1
    0 0 0
    output
    1
    Note

    In the first example Pavel can change the permutation to 4, 3, 1, 2.

    In the second example Pavel can change any element of b to 1.

    分析:先考虑环的个数,环个数>1,答案加上环个数;

       在环内,2个面都能访问到每个位置当仅当翻面次数为奇数次;

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <bitset>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define vi vector<int>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    #define pii pair<int,int>
    #define sys system("pause")
    const int maxn=2e5+10;
    using namespace std;
    inline ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    inline ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    inline void umax(ll &p,ll q){if(p<q)p=q;}
    inline void umin(ll &p,ll q){if(p>q)p=q;}
    inline ll read()
    {
        ll x=0;int f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    int n,m,k,t,p[maxn],ret,vis[maxn];
    int main()
    {
        int i,j;
        scanf("%d",&n);
        rep(i,1,n)p[i]=read();
        rep(i,1,n)
        {
            k=read();
            if(k==1)++j;
        }
        ret+=j%2==0;
        rep(i,1,n)
        {
            if(!vis[i])t++;
            int pos=i;
            while(!vis[pos])
            {
                vis[pos]=1,pos=p[pos];
            }
        }
        ret+=t!=1?t:0;
        printf("%d
    ",ret);
        return 0;
    }
  • 相关阅读:
    PV、UV、VV、IP是什么意思?
    多用户远程linux
    实用性阅读指南读书笔记
    在VS添加万能头文件 操作
    sqrt函数实现之卡马克方法
    大端法、小端法及其判断方法
    STL源码剖析之ROUND_UP函数实现原理及其拓展
    海康和多益面经
    小米实习生面试面经
    阿里c++一面面经
  • 原文地址:https://www.cnblogs.com/dyzll/p/6349989.html
Copyright © 2011-2022 走看看