zoukankan      html  css  js  c++  java
  • Sorting It All Out

    Sorting It All Out
    Time Limit: 1000MS   Memory Limit: 10000K
         

    Description

    An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

    Input

    Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

    Output

    For each problem instance, output consists of one line. This line should be one of the following three:

    Sorted sequence determined after xxx relations: yyy...y.
    Sorted sequence cannot be determined.
    Inconsistency found after xxx relations.

    where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.

    Sample Input

    4 6
    A<B
    A<C
    B<C
    C<D
    B<D
    A<B
    3 2
    A<B
    B<A
    26 1
    A<Z
    0 0
    

    Sample Output

    Sorted sequence determined after 4 relations: ABCD.
    Inconsistency found after 2 relations.
    Sorted sequence cannot be determined.
    分析:优先判断有没有环;
       然后判断能不能全部排好序;
       最后才是条件不全;
       前两个利用拓扑排序,入度为0入队列,同一时间有>1个在队列中,条件不全;
       拓扑完还有入度的为环,不成立,输出;
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <bitset>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define vi vector<int>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    #define pii pair<int,int>
    #define sys system("pause")
    const int maxn=1e4+10;
    const int N=5e4+10;
    const int M=N*10*10;
    using namespace std;
    inline ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    inline ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    inline void umax(ll &p,ll q){if(p<q)p=q;}
    inline void umin(ll &p,ll q){if(p>q)p=q;}
    int n,m,k,t,du[26],dudu[26],ret[27];
    vi e[26];
    char op[5];
    int gao()
    {
        int i,j,ok=1;
        ret[0]=0;
        queue<int>p;
        rep(i,0,n-1){du[i]=dudu[i];if(!du[i])p.push(i);}
        while(!p.empty())
        {
            if(p.size()>1)ok=0;
            int q=p.front();
            p.pop();
            ret[++ret[0]]=q;
            for(int i=0;i<e[q].size();i++)
            {
                int x=e[q][i];
                if(--du[x]==0)p.push(x);
            }
        }
        rep(i,0,n-1)if(du[i])return 2;
        return ok&&ret[0]==n;
    }
    int main()
    {
        int i,j;
        while(~scanf("%d%d",&n,&k))
        {
            bool flag=false;
            if(!n&&!k)break;
            rep(i,0,n-1)dudu[i]=0,e[i].clear();
            rep(i,1,k)
            {
               scanf("%s",op);
               if(op[1]=='>')swap(op[0],op[2]);
               e[op[0]-'A'].pb(op[2]-'A');
               dudu[op[2]-'A']++;
               if(flag)continue;
               int x=gao();
               if(x==1)
               {
                   printf("Sorted sequence determined after %d relations: ",i);
                   rep(j,1,ret[0])printf("%c",ret[j]+'A');
                   puts(".");
                   flag=true;
               }
               else if(x==2)printf("Inconsistency found after %d relations.
    ",i),flag=true;
            }
            if(!flag)puts("Sorted sequence cannot be determined.");
        }
        return 0;
    }
  • 相关阅读:
    Delphi XE4 FireMonkey 开发 IOS APP 发布到 AppStore 最后一步.
    Native iOS Control Delphi XE4
    Delphi XE4 iAD Framework 支持.
    using IOS API with Delphi XE4
    GoF23种设计模式之行为型模式之命令模式
    Android青翼蝠王之ContentProvider
    Android白眉鹰王之BroadcastReceiver
    Android倚天剑之Notification之亮剑IOS
    Android紫衫龙王之Activity
    GoF23种设计模式之行为型模式之访问者模式
  • 原文地址:https://www.cnblogs.com/dyzll/p/6411269.html
Copyright © 2011-2022 走看看