zoukankan      html  css  js  c++  java
  • HDU 3999 二叉排序树

     

    The order of a Tree

    Problem Description
    The shape of a binary search tree is greatly related to the order of keys we insert. To be precisely:
    1.  insert a key k to a empty tree, then the tree become a tree with
      only one node;
    2.  insert a key k to a nonempty tree, if k is less than the root ,insert
      it to the left sub-tree;else insert k to the right sub-tree.
      We call the order of keys we insert “the order of a tree”,your task is,given a oder of a tree, find the order of a tree with the least lexicographic order that generate                           the same tree.Two trees are the same if and only if they have the same shape.
     
    Input
    There are multiple test cases in an input file. The first line of each testcase is an integer n(n <= 100,000),represent the number of nodes.The second line has n intergers,k1 to kn,represent the order of a tree.To make if more simple, k1 to kn is a sequence of 1 to n.
     
    Output
    One line with n intergers, which are the order of a tree that generate the same tree with the least lexicographic.
     
    Sample Input
    4
    1 3 4 2
     
    Sample Output
    1 3 2 4
     
    二叉排序树如何建立和遍历是关键。
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    int ld[100010],rd[100010],a,num,root,i;
    void build(int root,int al)
    {
        if(al>root)
        {
            if(rd[root]==-1)
            {
                rd[root]=al;
                //cout<<"al:"<<al<<" r root:"<<root<<endl;
            }
            else build(rd[root],al);
        }
        else
        {
            if(ld[root]==-1)
            {
                ld[root]=al;
                //cout<<"al:"<<al<<" l root:"<<root<<endl;
            }
            else build(ld[root],al);
        }
    }
    
    void solve(int root)
    {
        if(ld[root]!=-1)
        {
            cout<<" "<<ld[root];
            solve(ld[root]);
        }
        if(rd[root]!=-1)
        {
            cout<<" "<<rd[root];
            solve(rd[root]);
        }
        else return;
    }
    
    int main()
    {
        while(~scanf("%d",&num))
        {
            memset(ld,-1,sizeof(ld));
            memset(rd,-1,sizeof(rd));
            for(i=1;i<=num;i++)
            {
                scanf("%d",&a);
                if(i==1){root=a;}
                else build(root,a);
            }
            cout<<root;
            solve(root);
            cout<<endl;
        }
        return 0;
    }
    View Code
  • 相关阅读:
    mysql的undo log和redo log
    MySQL表的定期分析检查优化
    MySQL 数据库设计总结
    Innodb引擎下mysql自身配置优化
    linux的top命令参数详解
    InnoDB的关键特性-插入缓存,两次写,自适应hash索引
    第一次接私活亲身经历
    码农与技术控
    软件公司与非软件公司区别(纯个人看法)
    SQL Server表 & 存储过程 创建日期查询
  • 原文地址:https://www.cnblogs.com/dzzy/p/5071065.html
Copyright © 2011-2022 走看看