Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
仔细想想感觉这道题应该是扫一遍就能得到结果的。。。对某个值A[i]来说,能trapped的最多的water取决于在i之前最高的值leftMostHeight[i]和在i右边的最高的值rightMostHeight[i](均不包含自身)。如果min(left,right) > A[i],那么在i这个位置上能trapped的water就是min(left,right) – A[i]。有了这个想法就好办了,第一遍从左到右计算数组leftMostHeight,第二遍从右到左计算rightMostHeight。时间复杂度是O(n)。
1 class Solution { 2 public: 3 int trap(int A[], int n) { 4 int maxHeight = 0; 5 vector<int> leftMostHeight(n, 0); 6 for (int i = 0; i < n; ++i) { 7 leftMostHeight[i] = maxHeight; 8 maxHeight = (maxHeight > A[i]) ? maxHeight : A[i]; 9 } 10 maxHeight = 0; 11 vector<int> rightMostHeight(n, 0); 12 for (int i = n - 1; i >= 0; --i) { 13 rightMostHeight[i] = maxHeight; 14 maxHeight = (maxHeight > A[i]) ? maxHeight : A[i]; 15 } 16 int water = 0, height; 17 for (int i = 0; i < n; ++i) { 18 height = min(leftMostHeight[i], rightMostHeight[i]) - A[i]; 19 water += (height > 0) ? height: 0; 20 } 21 return water; 22 } 23 };
下面是扫一遍的代码:
1 class Solution { 2 public: 3 int trap(int A[], int n) { 4 int left = 0, right = n - 1; 5 int height = 0, res = 0; 6 while (left < right) { 7 if (A[left] < A[right]) { 8 height = max(height, A[left]); 9 res += height - A[left]; 10 ++left; 11 } else { 12 height = max(height, A[right]); 13 res += height - A[right]; 14 --right; 15 } 16 } 17 return res; 18 } 19 };