zoukankan      html  css  js  c++  java
  • [LeetCode] Palindrome Permutation I & II

    Palindrome Permutation

    Given a string, determine if a permutation of the string could form a palindrome.

    For example,
    "code" -> False, "aab" -> True, "carerac" -> True.

    Hint:

      1. Consider the palindromes of odd vs even length. What difference do you notice?
      2. Count the frequency of each character.
      3. If each character occurs even number of times, then it must be a palindrome. How about character which occurs odd number of times
     1 class Solution {
     2 public:
     3     bool canPermutePalindrome(string s) {
     4         vector<int> cnt(256, 0);
     5         for (auto a : s) ++cnt[a];
     6         bool flag = false;
     7         for (auto n : cnt) if (n & 1) {
     8             if (!flag) flag = true;
     9             else return false;
    10         }
    11         return true;
    12     }
    13 };

    Palindrome Permutation II

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empty list if no palindromic permutation could be form.

    For example:

    Given s = "aabb", return ["abba", "baab"].

    Given s = "abc", return [].

    Hint:

    1. If a palindromic permutation exists, we just need to generate the first half of the string.
    2. To generate all distinct permutations of a (half of) string, use a similar approach from: Permutations II or Next Permutation.

    没按提示来,直接用的DFS,不知道符不符合要求。

     1 class Solution {
     2 public:
     3     void dfs(vector<string> &res, vector<int> &cnt, string &s, int l, int r) {
     4         if (l >= r) {
     5             res.push_back(s);
     6             return;
     7         }
     8         for (int i = 0; i < cnt.size(); ++i) if (cnt[i] >= 2) {
     9             cnt[i] -= 2;
    10             s[l] = s[r] = i;
    11             dfs(res, cnt, s, l + 1, r - 1);
    12             cnt[i] += 2;
    13         }
    14     }
    15     vector<string> generatePalindromes(string s) {
    16         vector<int> cnt(256, 0);
    17         for (auto a : s) ++cnt[a];
    18         bool flag = false;
    19         for (int i = 0; i < cnt.size(); ++i) if (cnt[i] & 1) {
    20             if (!flag) {
    21                 flag = true;
    22                 s[s.length() / 2] = i;
    23             } else {
    24                 return {};
    25             }
    26         }
    27         vector<string> res;
    28         dfs(res, cnt, s, 0, s.length() - 1);
    29         return res;
    30     }
    31 };
  • 相关阅读:
    算法
    数据结构
    BZOJ 3514 GERALD07加强版 (LCT+主席树)
    扩展莫队小总结 (树上/带修改莫队)
    HDU 5729 Rigid Frameworks (联通块计数问题)
    博弈论题目总结(三)——组合游戏进阶
    CF135E Weak Subsequence (计数问题)
    luogu 2483 K短路 (可持久化左偏树)
    博弈论题目总结(二)——SG组合游戏及变形
    BZOJ 2006 [NOI2010]超级钢琴 (堆+主席树)
  • 原文地址:https://www.cnblogs.com/easonliu/p/4784930.html
Copyright © 2011-2022 走看看