zoukankan      html  css  js  c++  java
  • OpenCV矩阵可视化工具包

    在用opencv编程时,经常需要可视化地查看某个矩阵在运算过程中的状态如何,而opencv中的imshow函数只能以灰度显示单通道uchar或float类型的图像,其可视化效果不尽人意,为此,我写了一个矩阵可视化工具包,其中包含了一个类似于matlab中的imagesc的函数,能够以不同的颜色显示矩阵中不同大小的值,这个函数在查看矩阵时非常方便,这里贡大家参考。

    VisualizationTool.h

    View Code
    //http://www.cnblogs.com/easymind223
    
    
    #pragma once
    #ifndef _VISUALIZATION_TOOL_H_
    #define _VISUALIZATION_TOOL_H_
    
    #include "opencv2/opencv.hpp"
    
    #define HIST_TYPE_MIX 0
    #define HIST_TYPE_CONTOUR 1
    
    namespace VisualizationTool
    {
    
    //深度显示单通道uchar,float, int类型图像,
    void imageSC(std::string windowName, const cv::Mat imgC1);
    
    //以柱状图显示数组,array必须为 CV_32F,CV_32S,CV_8U中的一种,且rows == 1
    void ShowArrayHistogram(std::string title, cv::Mat array, cv::Size size = cv::Size(400,400));
    
    //显示一幅图像的直方图,histType为显示方式,HIST_TYPE_MIX表示三通道混合显示,HIST_TYPE_CONTOUR表示以轮廓显示
    void showImageHistogram(const std::string windowName, const cv::Mat src, 
        const cv::Mat mask = cv::Mat(), int histType = HIST_TYPE_MIX, 
        cv::Size windowSize = cv::Size(256, 200));
    
    //显示一幅图像的颜色分布图
    void showImageColorDistribution(const std::string windowName, const cv::Mat src_3u,
        int nBins = 32, const cv::Mat mask = cv::Mat(), cv::Size windowSize = cv::Size(256, 200));
    
    }
    #endif

    VisualizationTool.cpp

    View Code
    #include "stdafx.h"
    #include "VisualizationTool.h"
    
    namespace VisualizationTool
    {
    
    void imageSC(std::string windowName, const cv::Mat imgC1)
    {
        assert(imgC1.channels() == 1 && !imgC1.empty());
    
        //get min max value of the mat
        double minPixelValue, maxPixelValue;
        cv::minMaxIdx(imgC1, &minPixelValue, &maxPixelValue);
        double valueRange = maxPixelValue - minPixelValue;
    
        //init color table
        const int minSaturation = 20;
        const int colorTableLength = (255 - minSaturation) * 4;    // r -> g -> b
        cv::Scalar colorTable[colorTableLength];
    
        int i,j;
        for (i = 0, j = minSaturation; i < colorTableLength / 4; i++, j++)
            colorTable[i] = CV_RGB(255, j, minSaturation);
        for (i = colorTableLength / 4, j=1; i < colorTableLength / 2; i++, j++)
            colorTable[i] = CV_RGB(255 - j, 255, minSaturation);
        for (i = colorTableLength/2, j=minSaturation; i < colorTableLength/4*3; i++, j++)
            colorTable[i] = CV_RGB(minSaturation, 255, j);
        for (i = colorTableLength/4*3, j=1; i < colorTableLength; i++, j++)
            colorTable[i] = CV_RGB(minSaturation, 255 - j, 255);
    
    
        //draw color table
        const int margin = 20;
        const int tableHeight = 300;;
        const int tableWidth = 150;
        const int barWidth = 30;
        const int barHeight = tableHeight - margin * 2;
        float scale = (float)barHeight / colorTableLength;
    
        int imageHeight = cv::max(imgC1.rows, tableHeight);
        int imageWidth = imgC1.cols + tableWidth;
        cv::Mat img3u( imageHeight, imageWidth, CV_8UC3, cv::Scalar::all(0));
    
        for (int i=0; i<barHeight; i++)
        {
            cv::Point pt1(imgC1.cols + margin, margin + i);
            cv::Point pt2(imgC1.cols + margin + barWidth, margin + i);
            cv::line(img3u, pt1, pt2, colorTable[cvRound(i/scale)], 1);
        }
    
        //illustration
        for (int i=0; i<5; i++)
        {
            float value = minPixelValue + i / 4.0 * valueRange;
            std::stringstream s;
            s<<value;
            int bx = imgC1.cols + margin + barWidth;
            int by = tableHeight - margin - barHeight / 4 * i ;
            cv::line(img3u, cv::Point(bx+5, by), cv::Point(bx+10, by), cvScalarAll(255), 2);
            cv::putText(img3u, s.str(), cv::Point(bx + 20, by + 8),
                CV_FONT_HERSHEY_SIMPLEX, 0.6, cvScalarAll(255), 1);
        }
    
        //show image
        cv::Mat tim(imgC1.size(), CV_32F);
        imgC1.convertTo(tim, CV_32F);
    
        for (int y = 0; y < imgC1.rows; y++)
        {
            const float* srcData = tim.ptr<float>(y);
            cv::Vec3b* dstData = img3u.ptr<cv::Vec3b>(y);
            for (int x = 0; x<imgC1.cols; x++)
            {
                double pixel = (srcData[x] - minPixelValue) / valueRange;
                cv::Scalar color = colorTable[cvRound(pixel * (colorTableLength-1))];
                dstData[x] =cv::Vec3b(color.val[2], color.val[1], color.val[0]);
            }
        }
        cv::imshow(windowName, img3u);
    }
    
    void ShowArrayHistogram(std::string title, cv::Mat hist, cv::Size size)
    {
        CV_Assert(hist.rows == 1);
        cv::Mat imHist = cv::Mat::zeros(size, CV_8UC3);
        int nBins = hist.rows*hist.cols;
        double min, max;
        cv::minMaxLoc(hist, &min, &max);
        double bin_width=(double)size.width/nBins;  
        double bin_unith=(double)size.height/max;
    
        if(hist.type() == CV_32F)
        {
            float * ptr = hist.ptr<float>(0);
            for(int i=0;i<nBins;i++)  
            {  
                cv::Point p0=cv::Point(i*bin_width,size.height);  
                cv::Point p1=cv::Point((i+1)*bin_width,size.height-ptr[i]*bin_unith);  
                cv::rectangle(imHist, p0, p1, cv::Scalar::all(255), -1, 0, 0);
            } 
        }
        if(hist.type() == CV_32S)
        {
            int* ptr = hist.ptr<int>(0);
            for(int i=0;i<nBins;i++)  
            {  
                cv::Point p0=cv::Point(i*bin_width,size.height);  
                cv::Point p1=cv::Point((i+1)*bin_width,size.height-ptr[i]*bin_unith);  
                cv::rectangle(imHist, p0, p1, cv::Scalar::all(255), -1, 0, 0);
            } 
        }
        if(hist.type() == CV_8U)
        {
            uchar* ptr = hist.ptr<uchar>(0);
            for(int i=0;i<nBins;i++)  
            {  
                cv::Point p0=cv::Point(i*bin_width,size.height);  
                cv::Point p1=cv::Point((i+1)*bin_width,size.height-ptr[i]*bin_unith);  
                cv::rectangle(imHist, p0, p1, cv::Scalar::all(255), -1, 0, 0);
            } 
        }
    
        cv::namedWindow(title);
        cv::imshow(title, imHist);
    }
    
    void showImageHistogram(const std::string windowName, const cv::Mat src,  const cv::Mat mask, int histType, cv::Size windowSize)
    {
        CV_Assert(!src.empty());
        if (!mask.empty())
        {
            CV_Assert(mask.type() == CV_8U && src.size() == mask.size());
        }
    
        cv::Mat src_3u;
        if(src.channels()==1)
            cv::cvtColor(src, src_3u, CV_GRAY2RGB);
        else
            src_3u = src;
    
        //shrink the src to save time
        float th_maxSide = 300.0;
        int maxSide = cv::max(src_3u.cols , src_3u.rows);
        cv::Mat zoom_3u, zoomMask_1u;
    
        if (maxSide > th_maxSide)
        {
            float scale = maxSide / th_maxSide;
            zoom_3u.create(src_3u.rows / scale, src_3u.cols / scale, CV_8UC3);
            cv::resize(src_3u, zoom_3u, zoom_3u.size(), 0, 0, cv::INTER_LANCZOS4 );
    
            if(!mask.empty())
            {
                zoomMask_1u.create(mask.rows / scale, mask.cols / scale, CV_8U);
                cv::resize(mask, zoomMask_1u, zoomMask_1u.size(), 0, 0, cv::INTER_LANCZOS4 );
            }
        }
        else
        {
            zoom_3u = src_3u;
            if(!mask.empty())
                zoomMask_1u = mask;
        }
    
        std::vector<cv::Mat> rgb_planes;
        cv::split(zoom_3u, rgb_planes );
    
        int nBins = 255;
    
        /// 设定取值范围 ( R,G,B) )
        float range[] = { 0, 256 } ;
        const float* histRange = { range };
    
        bool uniform = true; bool accumulate = false;
    
        cv::Mat r_hist, g_hist, b_hist;
    
        /// 计算直方图:
        cv::calcHist( &rgb_planes[0], 1, 0, zoomMask_1u, r_hist, 1, &nBins, &histRange, uniform, accumulate );
        cv::calcHist( &rgb_planes[1], 1, 0, zoomMask_1u, g_hist, 1, &nBins, &histRange, uniform, accumulate );
        cv::calcHist( &rgb_planes[2], 1, 0, zoomMask_1u, b_hist, 1, &nBins, &histRange, uniform, accumulate );
    
        // 创建直方图画布
        int canvasWidth = windowSize.width; 
        int canvasHeight = windowSize.height;
        int binWidth = cvRound( (double) canvasWidth / nBins );
    
        cv::Mat histImage(canvasHeight, canvasWidth,  CV_8UC3, cv::Scalar( 0,0,0) );
    
        /// 将直方图归一化到范围 [ 0, histImage.rows ]
        cv::normalize(r_hist, r_hist, 0, histImage.rows, cv::NORM_MINMAX, -1, cv::Mat() );
        cv::normalize(g_hist, g_hist, 0, histImage.rows, cv::NORM_MINMAX, -1, cv::Mat() );
        cv::normalize(b_hist, b_hist, 0, histImage.rows, cv::NORM_MINMAX, -1, cv::Mat() );
    
        /// 在直方图画布上画出直方图
        if (histType == HIST_TYPE_CONTOUR)
        {
            for( int i = 1; i < nBins; i++ )
            {
                cv::line( histImage, cv::Point( binWidth*(i-1), canvasHeight - cvRound(r_hist.at<float>(i-1)) ) ,
                    cv::Point( binWidth*(i), canvasHeight - cvRound(r_hist.at<float>(i)) ),
                    cv::Scalar(255, 0, 0), 2, 8, 0  );
                cv::line( histImage, cv::Point( binWidth*(i-1), canvasHeight - cvRound(g_hist.at<float>(i-1)) ) ,
                    cv::Point( binWidth*(i), canvasHeight - cvRound(g_hist.at<float>(i)) ),
                    cv::Scalar( 0, 255, 0), 2, 8, 0  );
                cv::line( histImage, cv::Point( binWidth*(i-1), canvasHeight - cvRound(b_hist.at<float>(i-1)) ) ,
                    cv::Point( binWidth*(i), canvasHeight - cvRound(b_hist.at<float>(i)) ),
                    cv::Scalar( 0, 0, 255), 2, 8, 0  );
            }
        }
        else if (histType == HIST_TYPE_MIX)
        {
            for (int iBin=0; iBin<nBins; iBin++)
            {
                for (int iValue=1; iValue < r_hist.at<float>(iBin); iValue++)
                {
                    for (int j=0; j<binWidth; j++)
                    {
                        cv::Vec3b& pixel = histImage.at<cv::Vec3b>(canvasHeight - iValue, iBin * binWidth + j);
                        pixel.val[0] = 255;
                    }
                }
                for (int iValue=1; iValue < g_hist.at<float>(iBin); iValue++)
                {
                    for (int j=0; j<binWidth; j++)
                    {
                        cv::Vec3b& pixel = histImage.at<cv::Vec3b>(canvasHeight - iValue, iBin * binWidth + j);
                        pixel.val[1] = 255;
                    }
                }
                for (int iValue=1; iValue < b_hist.at<float>(iBin); iValue++)
                {
                    for (int j=0; j<binWidth; j++)
                    {
                        cv::Vec3b& pixel = histImage.at<cv::Vec3b>(canvasHeight - iValue, iBin * binWidth + j);
                        pixel.val[2] = 255;
                    }
                }
            }
        }
        cv::imshow(windowName, histImage );    
    }
    
    bool histCompare(std::pair<cv::Scalar,int> v1, std::pair<cv::Scalar,int> v2)
    {
        return v1.second < v2.second;
    }
    
    int countValueAppearTimes(const cv::Mat srcC1, double value)
    {
        CV_Assert(!srcC1.empty() && srcC1.channels()==1);
    
        cv::Mat r = srcC1 - value;
        int times = cv::countNonZero(r);
        return srcC1.cols * srcC1.rows - times;
    }
    
    void showImageColorDistribution(const std::string windowName, const cv::Mat src_3u, int nBins, 
        const cv::Mat mask, cv::Size windowSize)
    {
        CV_Assert(!src_3u.empty() );
        if (!mask.empty())
        {
            CV_Assert(mask.type() == CV_8U && src_3u.size() == mask.size());
        }
    
        //shrink the src to save time
        float th_maxSide = 300.0;
        int maxSide = cv::max(src_3u.cols , src_3u.rows);
        cv::Mat zoom_3u, zoomMask_1u;
    
        if (maxSide > th_maxSide)
        {
            float scale = maxSide / th_maxSide;
            zoom_3u.create(src_3u.rows / scale, src_3u.cols / scale, CV_8UC3);
            cv::resize(src_3u, zoom_3u, zoom_3u.size(), 0, 0, cv::INTER_LANCZOS4 );
    
            if(!mask.empty())
            {
                zoomMask_1u.create(mask.rows / scale, mask.cols / scale, CV_8U);
                cv::resize(mask, zoomMask_1u, zoomMask_1u.size(), 0, 0, cv::INTER_LANCZOS4 );
            }
        }
        else
        {
            zoom_3u = src_3u;
            if(!mask.empty())
                zoomMask_1u = mask;
        }
        int maskNonZero = countNonZero(zoomMask_1u);
    
        //k-means cluster
        cv::Mat clusterMat;
        cv::Mat bestLabels, centers;
        cv::Vec3b* data = zoom_3u.ptr<cv::Vec3b>(0);
        if(mask.empty())
        {
            clusterMat.create(zoom_3u.cols * zoom_3u.rows, 3, CV_32F);
            for (int i=0; i<zoom_3u.cols * zoom_3u.rows; i++)
            {
                cv::Vec3b pixel = data[i];
                clusterMat.at<float>(i, 0) = pixel.val[0];
                clusterMat.at<float>(i, 1) = pixel.val[1];
                clusterMat.at<float>(i, 2) = pixel.val[2];
            }
        }
        else
        {
            clusterMat.create(maskNonZero, 3, CV_32F);
            const uchar* maskData = zoomMask_1u.ptr<uchar>(0);
            for (int i=0, j=0; i<zoomMask_1u.cols * zoomMask_1u.rows; i++)
            {
                if(maskData[i] > 0)
                {
                    cv::Vec3b pixel = data[i];
                    clusterMat.at<float>(j, 0) = pixel.val[0];
                    clusterMat.at<float>(j, 1) = pixel.val[1];
                    clusterMat.at<float>(j, 2) = pixel.val[2];
                    j++;
                }
            }
        }
    
        cv::kmeans(clusterMat, nBins, bestLabels, cv::TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0),
            3, cv::KMEANS_PP_CENTERS, centers);
    
        //statistics
        std::vector<std::pair<cv::Scalar,int>> hist(nBins);
        for (int i=0; i<nBins; i++)
        {
            cv::Scalar color( centers.at<float>(i,0), centers.at<float>(i,1), centers.at<float>(i,2));
            int val = countValueAppearTimes(bestLabels, i);
            hist.at(i) = std::pair<cv::Scalar,int>(color, val);
        }
        std::sort(hist.begin(), hist.end(), histCompare);
        int maxValue = hist[nBins-1].second;
    
        //canvas
        float scale = (float)windowSize.height / maxValue;
        int binWidth = windowSize.width / nBins;
        cv::Mat canvas(windowSize, CV_8UC3, cv::Scalar::all(30));
    
        for (int i=0; i<nBins; i++)
        {
            cv::Point pt1(  i    * binWidth, canvas.rows - 1);
            cv::Point pt2( (i+1) * binWidth, canvas.rows - 1 - hist[i].second * scale);        
            cv::rectangle(canvas, pt1, pt2, hist[i].first, -1);
        }
        cv::imshow(windowName, canvas);
    }
    
    }

      注意:由于博客园的bug, cpp文件中的kmeans函数会复制不全,复制以后可能会少一个参数,请仔细检查

    解释一下文件中的几个函数:

    1. void imageSC(std::string windowName, const cv::Mat imgC1)

    深度显示单通道uchar,float, int类型图像,类似于matlab的imagesc函数,本函数还自带颜色表和矩阵的值域分布

    例:

    2. void showImageHistogram(const std::string windowName, const cv::Mat src, const cv::Mat mask = cv::Mat(), int histType = HIST_TYPE_MIX, cv::Size windowSize = cv::Size(256, 200));

    显示一幅图像的直方图,histType为显示方式,HIST_TYPE_MIX表示三通道混合显示,HIST_TYPE_CONTOUR表示以轮廓显示,窗口的宽度最好是256的倍数。

    例:

    3.void showImageColorDistribution(const std::string windowName, const cv::Mat src_3u, int nBins = 32, const cv::Mat mask = cv::Mat(), cv::Size windowSize = cv::Size(256, 200));

    显示一幅图像的颜色分布图,这个函数有点慢,结果也有一定的不确定性,因为用到了k-means,函数的速度取决于nBins的大小,窗口的宽度最好是256的倍数。

    例:

    4. void ShowArrayHistogram(std::string title, cv::Mat array, cv::Size size = cv::Size(400,400));

    以柱状图显示一维数组,array必须为 CV_32F,CV_32S,CV_8U中的一种,且rows == 1,这个函数就不贴图了~

  • 相关阅读:
    DOS下读取4GB内存
    开始了
    PHP函数补完:var_export()
    php 调试相关
    css选择符
    javascript的urlencode
    用CSS代码绘制三角形 纯CSS绘制三角形的代码
    Jquery 操作Cookie
    提高PHP编程效率的53种方法
    执行phpinfo();时提示:date_default_timezone_set()
  • 原文地址:https://www.cnblogs.com/easymind223/p/2991866.html
Copyright © 2011-2022 走看看