zoukankan      html  css  js  c++  java
  • [清华集训2016] 洛谷 P6670 汽水

    题意是在有边权的树上寻找平均边权与 (k) 最接近的链。树上找链的问题可以考虑点分治,而点分治的 (mathtt{Solve()}) 函数要处理过重心的链。

    (dis_x)(x) 到重心的边权和, (dep_x)(x) 的深度,则链 ((x,y)) 的平均边权 (P=frac{dis_x+dis_y}{dep_x+dep_y})。使其最小则是一个分数规划问题,考虑二分 (lvert P-k vert)。记为 (mid)

    (mathtt{Check()}) 函数需判定是否存在 (P) 至少满足 (k-mid leq P leq k)(k leq P leq k +mid) 其中之一。以前者为例,后者同理。该条件等价于:

    [egin{cases} (dis_x-dep_x*k)+(dis_y-dep_y*k)leq 0\ (dis_x-dep_x*(k-mid))+(dis_y-dep_y*(k-mid))geq 0end{cases} ]

    (f_x=dis_x-dep_x*k)(g_x=dis_x-dep_x*(k-mid))。 将所有点按照 (f_x) 排序后尺取法处理:遍历 (x) 时处理满足第一个条件的 (y) 范围,再通过维护 (g_y) 最大值判定范围内是否存在点满足第二个条件。

    时间复杂度 (O(n log n log k))

    还有一些其他细节:

    • (x)(y) 需位于不同子树,所以维护 (g_y) 最大值时还要维护一个其他子树中的最大值。

    • 链的端点可以在重心上,所以要加入一个 (dis_x=0,dep_x=0) 的点。

    • 输出答案下取整,二分要注意端点的判定。也可以使用实数二分,稍慢但是保险。

    • 点分治不要写错!我因为点分治的max打成min交了两页半……

    核心代码:

    bool CheckAbove(ld mid) {
    	ld mn=1e18,dif=1e18,flag; //dif是与最大值子树不同的部分最小值 
    	int nmn=-1,ndif=-1; //两个值分别对应的子树编号 
    	for(int l=1,r=top+1;l<=top;l++) {
    		while(r>1&&f(a[r-1])+f(a[l])>=0) { //处理可行f 
    			r--;
    			if(h(a[r],mid)<mn&&a[r].num!=nmn) {
    				ndif=nmn,nmn=a[r].num,dif=mn,mn=h(a[r],mid);
    			} else if(h(a[r],mid)<mn&&a[r].num==nmn) {
    				nmn=a[r].num,mn=h(a[r],mid);
    			} else if(h(a[r],mid)<dif&&a[r].num!=nmn) {
    				ndif=a[r].num,dif=h(a[r],mid);
    			} //维护g。由于重名这里用h 
    		}
    		if(nmn!=a[l].num) flag=h(a[l],mid)+mn; else flag=h(a[l],mid)+dif;
    		if(flag<=0) {return 1;}
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    大型项目使用Automake/Autoconf完成编译配置
    用C语言编写Windows服务程序的五个步骤
    RPC的发展历史(本质就是双方定义好协议,传递参数后远程调用)
    libuv和libev 异步I/O库的比较
    zlog 程序日志的库 交叉编译(Linux生成ARM库,观察执行步骤)
    应用服务
    EvnetBus
    this指向
    CPU使用率
    数据量小,创建索引有必要吗
  • 原文地址:https://www.cnblogs.com/ehznehc/p/14436218.html
Copyright © 2011-2022 走看看