zoukankan      html  css  js  c++  java
  • 【转】 ISP-镜头阴影校正(LSC)

    转自:https://blog.csdn.net/xiaoyouck/article/details/77206505

    介绍
    镜头阴影校正(Lens Shading Correction)是为了解决由于lens的光学特性,由于镜头对于光学折射不均匀导致的镜头周围出现阴影的情况。

    shading可以细分为luma shading和color shading:

    luma shading:
    由于Lens的光学特性,Sensor影像区的边缘区域接收的光强比中心小,所造成的中心和四角亮度不一致的现象。镜头本身就是一个凸透镜,由于凸透镜原理,中心的感光必然比周边多。如图所示:

    chrom/color shading:
    由于各种颜色的波长不同,经过了透镜的折射,折射的角度也不一样,因此会造成color shading的现象,这也是为什么太阳光经过三棱镜可以呈现彩虹的效果。如图所示:


    此外,还有CRA的原因会导致shading现象的出现,这里不再赘述,这里推荐《What’s CRA》这篇文章,详细讲述了由于镜头的CRA带来的shading。

    影响
    luma shading:会造成图像边角偏暗,就是所谓的暗角。

    color shading:中心和四周颜色不一致,体现出来一般为中心或者四周偏色。如图所示:

    校正
    lens shading的校正是分别对于bayer的四个通道进行校正,每个通道的校正过程是相对独立的过程。

    考虑到芯片设计的成本,因此一般情况下不会存储整幅图像的lut,目前主流的都是存储128*128个点的增益,利用双线性插值的方法计算每个pixel的增益。

    算法
    由于条件限制,图像仅用于算法验证,不做图像质量评判标准
    这里写了一个shading的算法,将图像分为16x16的方块,求取每个交点的增益值,对平面进行四次方拟合,分别计算了luma shading 和 chrom shading,先计算出来一个lut用于存储,校正的世行通过对这个lut进行双线性插值得到每个pixel的值乘以原本像素点。

    16x16的分块并非固定,可以对块的大小进行调整,比如中心块偏大,靠近边缘的方块变小,这些都是可以自定义的,本算法由于做演示使用,故不做其他功能。如图所示:

    code
    由于代码量较大,这里分别附上一部分算法

    shading lut caculate:

    function [image_r_gain, image_gr_gain, image_gb_gain, image_b_gain] = ...
    isp_lsc_lut(image_r, image_gr, image_gb, image_b, side_num)
    [height, width] = size(image_r);
    side_y = floor(height/side_num);
    side_x = floor(width/side_num);
    
    % figure,imshow(image_r);
    % hold on;
    % for k=0:side_num
    %     line_x = side_x * k;
    %     line_y = side_y * k;
    %     if(k==side_num && line_y ~= width) line_y = height;end
    %     if(k==side_num && line_x ~= width) line_x = width;end
    %     line([line_x,line_x],[0,height],'Color','red');
    %     line([0,width], [line_y, line_y],'Color','red');
    % %     line(Xd,Yd,'Color','red');
    % end
    % hold off
    
    %% compress resolution
    image_point = zeros(side_num,side_num);
    for i = 0:side_num
        for j = 0:side_num
            x_clip = floor([j*side_x - side_x/2, j*side_x + side_x/2]);
            y_clip = floor([i*side_y - side_y/2, i*side_y + side_y/2]);
            if(i==side_num && y_clip(2) ~= height) y_clip(2) = height;end
            if(j==side_num && x_clip(2) ~= width) x_clip(2) = width;end
            x_clip(x_clip<1) = 1;x_clip(x_clip>width) = width;
            y_clip(y_clip<1) = 1;y_clip(y_clip>height) = height;
            data_r_in = image_r(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
            image_r_point(i+1,j+1) = mean(mean(data_r_in));
            data_gr_in = image_gr(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
            image_gr_point(i+1,j+1) = mean(mean(data_gr_in));
            data_gb_in = image_gb(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
            image_gb_point(i+1,j+1) = mean(mean(data_gb_in));
            data_b_in = image_b(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
            image_b_point(i+1,j+1) = mean(mean(data_b_in));
        end
    end
    
    % figure,imshow(uint8(image_r_point));
    %% caculate lsc luma gain
    for i = 1:side_num+1
        for j = 1:side_num+1
            image_r_luma_gain_point(i,j) = mean2(image_r_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_r_point(i,j);
            image_gr_luma_gain_point(i,j) = mean2(image_gr_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_gr_point(i,j);
            image_gb_luma_gain_point(i,j) = mean2(image_gb_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_gb_point(i,j);
            image_b_luma_gain_point(i,j) = mean2(image_b_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_b_point(i,j);
        end
    end

    bilinear interpolation:

    image_r_luma_gain_reshape = reshape(image_r_luma_gain_point, [], 1);
    image_gr_luma_gain_reshape = reshape(image_gr_luma_gain_point, [], 1);
    image_gb_luma_gain_reshape = reshape(image_gb_luma_gain_point, [], 1);
    image_b_luma_gain_reshape = reshape(image_b_luma_gain_point, [], 1);
    for i = 1:17
        for j = 1:17
            x((i-1)*17+j) = i;
            y((i-1)*17+j) = j;
        end
    end
    x=x';
    y=y';
    % scatter3(x,y,image_r_luma_gain_reshape)
    % hold on
    Z=[ones(length(x),1),x,y,x.^2,x.*y,y.^2,x.^3,x.^2.*y,x.*y.^2,y.^3];
    [x y]=meshgrid(1:17,1:17);
    A=Zimage_r_luma_gain_reshape;
    image_r_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
    A=Zimage_gr_luma_gain_reshape;
    image_gr_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
    A=Zimage_gb_luma_gain_reshape;
    image_gb_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
    A=Zimage_b_luma_gain_reshape;
    image_b_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
    % surf(x,y,image_r_luma_gain)
    % hold on 
    % surf(x,y,image_r_luma_gain_point)
    
    %% calulate lsc chroma gain
    for i = 1:side_num+1
        for j = 1:side_num+1
            image_r_chroma_gain(i,j) = image_r_luma_gain(i,j) - image_r_luma_gain_point(i,j);
            image_gr_chroma_gain(i,j) = image_gr_luma_gain(i,j) - image_gr_luma_gain_point(i,j);
            image_gb_chroma_gain(i,j) = image_gb_luma_gain(i,j) - image_gb_luma_gain_point(i,j);
            image_b_chroma_gain(i,j) = image_b_luma_gain(i,j) - image_b_luma_gain_point(i,j);
        end
    end
    %% caculate lsc result gain
    image_r_gain = image_r_luma_gain - image_r_chroma_gain;
    image_gr_gain = image_gr_luma_gain - image_gr_chroma_gain;
    image_gb_gain = image_gb_luma_gain - image_gb_chroma_gain;
    image_b_gain = image_b_luma_gain - image_b_chroma_gain;
    
    function image_gain_lut = lsc_data_gain_interpolation(image_gain, height, width, side_num)
    side_y_ori = floor(height/side_num);
    side_x_ori = floor(width/side_num);
    k = 0;
    l = 0;
    [gain_height, gain_width] = size(image_gain);
    for i = 1:gain_height-1
        for j = 1:gain_width-1
            data_gain_11 = image_gain(i, j);
            data_gain_12 = image_gain(i, j+1);
            data_gain_21 = image_gain(i+1, j);
            data_gain_22 = image_gain(i+1, j+1);
            if(j == gain_width-1 && ((j-1)*side_x + l) ~= width) 
                side_x = width - (j-1)*side_x_ori;
            else
                side_x = side_x_ori;
            end
    
            if(i == gain_width-1 && ((i-1)*side_y + k) ~= width)
                side_y = height - (i-1)*side_y_ori;
            else
                side_y = side_y_ori;
            end
    
            for k = 1:side_y
                for l = 1:side_x
                    label_y1 = 1;
                    label_x1 = 1;
                    label_y2 = side_y;
                    label_x2 = side_x;
                    image_gain_lut((i-1)*side_y_ori + k, (j-1)*side_x_ori + l) = ...
                        data_gain_22/(label_x2-label_x1)/(label_y2-label_y1)* ...
                        (l - label_x1) * (k - label_y1) + ...
                        data_gain_21/(label_x2-label_x1)/(label_y2-label_y1)* ...
                        (label_x2 - l) * (k - label_y1) + ...
                        data_gain_12/(label_x2-label_x1)/(label_y2-label_y1)* ...
                        (l - label_x1) * (label_y2 - k) + ...
                        data_gain_11/(label_x2-label_x1)/(label_y2-label_y1)* ...
                        (label_x2 - l) * (label_y2 - k);
                end
            end
        end
    end
    end

    效果展示:
    实验条件有限,图片有水波纹,仅用于理解算法

    original image:

    luma shading

     

    chroma shading:

     

    luma shading + chroma shading:

     

    tuning
    LSC的tuning一定要把校正图采集好,一般情况下raw图的G通道中心亮度在8bit的70%~80%之间,由于在不同色温情况下是经过插值的,因此需要校正多个光源,一般情况下TL84、D65、A光源下进行校正。将得到的LUT写入RAM中即可
    注意:采集的raw图不要有filcker。

    LSC强度一般是可调的,由于图像边角的增益会很大,因此在高倍gain下,可以把强度给降低,防止图像边角噪声压不住的情况。

    由于各个平台不同,这里不做详细介绍,想到再补充。

  • 相关阅读:
    bootstrap 下的 validation插件
    关于“SQL Server 阻止了对组件 'Ad Hoc Distributed Queries' 的 STATEMENT'OpenRowset/OpenDatasource' 的访问 ”
    从ActionFilterAttribute向view传送数据
    在MVC中写Filter时经常filterContext无法代码提示HttpContext的方法和属性的原因
    MVC MODEL中排除有些属性不需要验证时的方法
    powerdesigner设置唯一键,但不是主键的方式
    无软驱加载raid驱动安装windows2003及其他微软操作系统
    Bootstrap
    bootstrap 简洁、直观、强悍的前端开发框架,让web开发更迅速、简单
    [转]Web UI 设计命名规范
  • 原文地址:https://www.cnblogs.com/eleclsc/p/10619124.html
Copyright © 2011-2022 走看看