zoukankan      html  css  js  c++  java
  • 铁乐学python_Day40_进程池

    进程之间的数据共享

    基于消息传递的并发编程是大势所趋,
    即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合,通过消息队列交换数据。
    这样极大地减少了对使用锁和其他同步手段的需求,还可以扩展到分布式系统中。
    但进程间应该尽量避免通信,即便需要通信,也应该选择进程安全的工具来避免加锁带来的问题。
    以后我们会尝试使用数据库来解决现在进程之间的数据共享问题。

    进程间数据是独立的,可以借助于队列或管道实现通信,二者都是基于消息传递的。
    虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此。

    A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

    A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array.

    Manager支持的类型也很多。

    例:
    from multiprocessing import Manager,Process,Lock
    def work(d,lock):
    # with lock 就相当于一组 lock.acquire()  lock.release()
    # 上下文管理 :必须有一个开始动作 和 一个结束动作的时候
        with lock: #不加锁而操作共享的数据,肯定会出现数据错乱
            d['count']-=1
    
    if __name__ == '__main__':
        lock=Lock()
        with Manager() as m:
            dic=m.dict({'count':100})
            p_l=[]
            for i in range(98):
                p=Process(target=work, args=(dic, lock))
                p_l.append(p)
                p.start()
            for p in p_l:
                p.join()
            print(dic)
    

    进程池和multiprocess.Pool模块

    进程池

    为什么要有进程池?进程池的概念。
    在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务。
    那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?
    首先,创建进程需要消耗时间,销毁进程也需要消耗时间。
    第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,这样反而会影响程序的效率。
    因此我们不能无限制的根据任务开启或者结束进程。
    那么我们要怎么做呢?
    在这里,要给大家介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,
    有需求来了,就拿一个池中的进程来处理任务,等到处理完毕,进程并不关闭,
    而是将进程再放回进程池中继续等待任务。
    如果有很多任务需要执行,池中的进程数量不够,
    任务就要等待之前的进程执行任务完毕归来,拿到空闲进程才能继续执行。
    也就是说,池中进程的数量是固定的,那么同一时间最多有固定数量的进程在运行。
    这样不会增加操作系统的调度难度,还节省了开闭进程的时间,也一定程度上能够实现并发效果。

    multiprocess.Pool模块

    概念介绍
    Pool([numprocess [,initializer [, initargs]]]):创建进程池

    参数介绍:
    1 numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
    2 initializer:是每个工作进程启动时要执行的可调用对象,默认为None
    3 initargs:是要传给initializer的参数组

    主要方法:
    p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
    '''需要强调的是:此操作并不会在所有池工作进程中并执行func函数。
    如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()'''
    
    p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
    '''此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。'''
    
    p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成。
    
    P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用。
    
    方法apply_async()和map_async()的返回值是AsyncResul的实例obj。
    实例具有以下方法
    obj.get():返回结果,如果有必要则等待结果到达。
    timeout是可选的。如果在指定时间内还没有到达,将引发异常。
    如果远程操作中引发了异常,它将在调用此方法时再次被引发。
    obj.ready():如果调用完成,返回True。
    obj.successful():如果调用完成且没有引发异常,返回True,如果在结果就绪之前调用此方法,引发异常。
    obj.wait([timeout]):等待结果变为可用。
    obj.terminate():立即终止所有工作进程,同时不执行任何清理或结束任何挂起工作。
    如果p被垃圾回收,将自动调用此函数。
    
    例:进程池的同步调用
    import os,time
    from multiprocessing import Pool
    
    def work(n):
        print('%s run' %os.getpid())
        time.sleep(2)
        return n**2
    
    if __name__ == '__main__':
        p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
        res_l=[]
        for i in range(10):
            res_l.append(p.apply(work,args=(i,)))
    	  # 同步调用,直到本次任务执行完毕拿到return,
    	  # 等待任务work执行的过程中可能有阻塞也可能没有阻塞
           # 但不管该任务是否存在阻塞,同步调用都会在原地等着
        print(res_l)
    
    972 run
    8036 run
    892 run
    972 run
    8036 run
    892 run
    972 run
    8036 run
    892 run
    972 run
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    
    例:进程池的异步调用
    import os
    import time
    import random
    from multiprocessing import Pool
    
    def work(n):
        print('%s run' %os.getpid())
        time.sleep(random.random())
        return n**2
    
    if __name__ == '__main__':
        p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
        res_l=[]
        for i in range(10):
            res = p.apply_async(work, args=(i,))
            # 异步运行,根据进程池中有的进程数,每次最多3个子进程在异步执行
            # 返回结果之后,将结果放入列表,归还进程,之后再执行新的任务
            # 需要注意的是,进程池中的三个进程不会同时开启或者同时结束
            # 而是执行完一个就释放一个进程,这个进程就去接收新的任务。
            res_l.append(res)
    
        # 异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,
        # 等待进程池内任务都处理完,然后可以用get收集结果
        # 否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
        p.close()
        p.join()
        for res in res_l:
            print(res.get())
        # 使用get来获取apply_aync的结果,如果是apply,则没有get方法,
        # 因为apply是同步执行,立刻获取结果,也根本无需get。
    
    例:server:进程池版socket并发聊天
    
    #!/usr/bin/env python
    # _*_ coding: utf-8 _*_
    
    # Pool内的进程数默认是cpu核数,假设为4(查看方法os.cpu_count())
    # 开启6个客户端,会发现2个客户端处于等待状态
    # 在每个进程内查看pid,会发现pid使用为4个,即多个客户端公用4个进程
    from socket import *
    from multiprocessing import Pool
    import os
    
    server = socket(AF_INET, SOCK_STREAM)
    server.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)
    server.bind(('127.0.0.1', 9527))
    server.listen(5)
    
    
    def talk(conn):
        print('进程pid: %s' % os.getpid())
        while True:
            try:
                msg = conn.recv(1024)
                if not msg: break
                conn.send(msg.upper())
            except Exception:
                break
    
    
    if __name__ == '__main__':
        p = Pool(4)
        while True:
            conn, *_ = server.accept()
            p.apply_async(talk, args=(conn,))
    
    client端
    #!/usr/bin/env python
    # _*_ coding: utf-8 _*_
    
    from socket import *
    
    client = socket(AF_INET, SOCK_STREAM)
    client.connect(('127.0.0.1', 9527))
    
    
    while True:
        msg=input('>>: ').strip()
        if not msg:continue
    
        client.send(msg.encode('utf-8'))
        msg=client.recv(1024)
        print(msg.decode('utf-8'))
    
    效果:
    进程pid: 7980
    进程pid: 6252
    进程pid: 7156
    进程pid: 7564
    进程pid: 7980
    
    同时只能开启4个进程,开第五个进程的时候会被阻塞,直到手动关掉前四个中的其中一个,第五个才能进到池子里运行。
    并发开启多个客户端,服务端同一时间只有4个不同的pid,只能结束一个客户端,另外一个客户端才会进来.
    
    回调函数  callback=
    需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了,你可以处理我的结果了。主进程则调用一个函数去处理该结果,该函数即回调函数
    
    我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。
    
    常用于爬虫场景。
    
    例:使用多进程请求多个url来减少网络等待浪费的时间
    #!/usr/bin/env python
    # _*_ coding: utf-8 _*_
    
    from multiprocessing import Pool
    import requests
    import os
    
    
    def get_page(url):
        print('<进程%s> get %s' % (os.getpid(), url))
        respone = requests.get(url)
        if respone.status_code == 200:
            return {'url': url, 'text': respone.text}
    
    
    def pasrse_page(res):
        print('<进程%s> parse %s' % (os.getpid(), res['url']))
        parse_res = 'url:<%s> size:[%s]
    ' % (res['url'], len(res['text']))
        with open('db.txt', 'a') as f:
            f.write(parse_res)
    
    
    if __name__ == '__main__':
        urls = [
            'https://www.baidu.com',
            'https://www.python.org',
            'https://www.openstack.org',
            'https://help.github.com/',
            'http://www.sina.com.cn/'
        ]
    
        p = Pool(3)
        res_l = []
        for url in urls:
            res = p.apply_async(get_page, args=(url,), callback=pasrse_page)
            res_l.append(res)
    
        p.close()
        p.join()
        print([res.get() for res in res_l])  
        # 拿到的是get_page的结果,其实完全没必要拿该结果,该结果已经传给回调函数处理了
    
    爬虫实例:
    #!/usr/bin/env python
    # _*_ coding: utf-8 _*_
    import re
    from urllib.request import urlopen
    from multiprocessing import Pool
    
    
    def get_page(url, pattern):
        response = urlopen(url).read().decode('utf-8')
        return pattern, response
    
    
    def parse_page(info):
        pattern, page_content = info
        res = re.findall(pattern, page_content)
        for item in res:
            dic = {
                'index': item[0].strip(),
                'title': item[1].strip(),
                'actor': item[2].strip(),
                'time': item[3].strip(),
            }
            print(dic)
    
    
    if __name__ == '__main__':
        regex = r'<dd>.*?<.*?class="board-index.*?>(d+)</i>.*?title="(.*?)".*?class="movie-item-info".*?<p class="star">(.*?)</p>.*?<p class="releasetime">(.*?)</p>'
        pattern1 = re.compile(regex, re.S)
    
        url_dic = {
            'http://maoyan.com/board/7': pattern1,
        }
    
        p = Pool()
        res_l = []
        for url, pattern in url_dic.items():
            res = p.apply_async(get_page, args=(url, pattern), callback=parse_page)
            res_l.append(res)
    
        for i in res_l:
            i.get()
    
    效果:
    {'index': '1', 'actor': '主演:泰尔·谢里丹,奥利维亚·库克,本·门德尔森', 'time': '上映时间:2018-03-30', 'title': '头号玩家'}
    {'index': '2', 'actor': '主演:道恩·强森,娜奥米·哈里斯,杰弗里·迪恩·摩根', 'time': '上映时间:2018-04-13', 'title': '狂暴巨兽'}
    {'index': '3', 'actor': '主演:帕拉巴斯,拉纳·达格巴帝,安努舒卡·谢蒂', 'time': '上映时间:2018-05-04', 'title': '巴霍巴利王2:终结'}
    {'index': '4', 'actor': '主演:小罗伯特·唐尼,克里斯·海姆斯沃斯,马克·鲁法洛', 'time': '上映时间:2018-05-11', 'title': '复仇者联盟3:无限战争'}
    {'index': '5', 'actor': '主演:奧古斯特·迪赫,史特凡·柯纳斯克,薇姬·克里普斯', 'time': '上映时间:2018-05-05', 'title': '青年马克思'}
    {'index': '6', 'actor': '主演:闫妮,邹元清,吴若甫', 'time': '上映时间:2018-05-11', 'title': '我是你妈'}
    {'index': '7', 'actor': '主演:凯特·玛拉,汤姆·费尔顿,布莱德利·惠特福德', 'time': '上映时间:2018-05-11', 'title': '战犬瑞克斯'}
    {'index': '8', 'actor': '主演:郭京飞,迪丽热巴,大鹏', 'time': '上映时间:2018-04-20', 'title': '21克拉'}
    {'index': '9', 'actor': '主演:杰森·格里菲,劳里·海梅斯,迪·布拉雷·贝克尔', 'time': '上映时间:2018-04-05', 'title': '冰雪女王3:火与冰'}
    {'index': '10', 'actor': '主演:井柏然,周冬雨,田壮壮', 'time': '上映时间:2018-04-28', 'title': '后来的我们'}
    
    如果在主进程中等待进程池中所有任务都执行完毕后,再统一处理结果,则无需回调函数。
    
    例:
    #!/usr/bin/env python
    # _*_ coding: utf-8 _*_
    
    from multiprocessing import Pool
    import time
    
    
    def work(n):
        time.sleep(1)
        return n ** 2
    
    
    if __name__ == '__main__':
        p = Pool()
    
        res_l = []
        for i in range(10):
            res = p.apply_async(work, args=(i,))
            res_l.append(res)
    
        p.close()
        p.join()  # 等待进程池中所有进程执行完毕
    
        nums = []
        for res in res_l:
            nums.append(res.get())  # 拿到所有结果
        print(nums)  # 主进程拿到所有的处理结果,可以在主进程中进行统一进行处理
    
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    

    end

  • 相关阅读:
    a标签去除默认样式
    js获取浏览器的get传值
    apache启动的时候报错非法协议
    获取iframe引入页面内的元素
    百度地图,画多边形后获取中心点
    echarts重写提示框信息,使提示框内的数字每3位以逗号分割
    echarts图例和图例文字位置的设置
    websocket socketJs
    winds添加静态路由
    pscp命令详解
  • 原文地址:https://www.cnblogs.com/tielemao/p/9043008.html
Copyright © 2011-2022 走看看