原文:http://blog.csdn.net/mu399/article/details/50903876
转两张思路图非常好:
描述略 图片思路很清晰。 Dijkstra不适用负权值,负权值用 FLoyd算法。
贴上 严蔚敏版代码
/* 测试数据 教科书 P189 G6 的邻接矩阵 其中 数字 1000000 代表无穷大 6 1000000 1000000 10 100000 30 100 1000000 1000000 5 1000000 1000000 1000000 1000000 1000000 1000000 50 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10 1000000 1000000 1000000 20 1000000 60 1000000 1000000 1000000 1000000 1000000 1000000 结果: D[0] D[1] D[2] D[3] D[4] D[5] 0 1000000 10 50 30 60 */ #include <iostream> #include <cstdio> #define MAX 1000000 using namespace std; int arcs[10][10];//邻接矩阵 int D[10];//保存最短路径长度 int p[10][10];//路径 int final[10];//若final[i] = 1则说明 顶点vi已在集合S中 int n = 0;//顶点个数 int v0 = 0;//源点 int v,w; void ShortestPath_DIJ() { for (v = 0; v < n; v++) //循环 初始化 { final[v] = 0; D[v] = arcs[v0][v]; for (w = 0; w < n; w++) p[v][w] = 0;//设空路径 if (D[v] < MAX) {p[v][v0] = 1; p[v][v] = 1;} } D[v0] = 0; final[v0]=0; //初始化 v0顶点属于集合S //开始主循环 每次求得v0到某个顶点v的最短路径 并加v到集合S中 for (int i = 1; i < n; i++) { int min = MAX; for (w = 0; w < n; w++) { //我认为的核心过程--选点 if (!final[w]) //如果w顶点在V-S中 { //这个过程最终选出的点 应该是选出当前V-S中与S有关联边 //且权值最小的顶点 书上描述为 当前离V0最近的点 if (D[w] < min) {v = w; min = D[w];} } } final[v] = 1; //选出该点后加入到合集S中 for (w = 0; w < n; w++)//更新当前最短路径和距离 { /*在此循环中 v为当前刚选入集合S中的点 则以点V为中间点 考察 d0v+dvw 是否小于 D[w] 如果小于 则更新 比如加进点 3 则若要考察 D[5] 是否要更新 就 判断 d(v0-v3) + d(v3-v5) 的和是否小于D[5] */ if (!final[w] && (min+arcs[v][w]<D[w])) { D[w] = min + arcs[v][w]; // p[w] = p[v]; p[w][w] = 1; //p[w] = p[v] + [w] } } } } int main() { cin >> n; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { cin >> arcs[i][j]; } } ShortestPath_DIJ(); for (int i = 0; i < n; i++) printf("D[%d] = %d ",i,D[i]); return 0; }