import matplotlib.pyplot as plt fig, ax = plt.subplots() ax.set(title=r'This is an expression $e^{sin(omegaphi)}$', xlabel='meters $10^1$', ylabel=r'Hertz $(frac{1}{s})$') plt.show()
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
x_data = np.linspace(0.05,1,101)
y_data = 1/x_data
noise = np.random.normal(0, 1, y_data.shape)
y_data2 = y_data + noise
def func_power(x, a, b):
return a*x**b
popt, pcov= curve_fit(func_power, x_data, y_data2)
plt.figure()
plt.scatter(x_data, y_data2, label = 'data')
plt.plot(x_data, popt[0] * x_data ** popt[1], label = ("$y = {{{}}}x^{{{}}}$").format(round(popt[0],2), round(popt[1],2)))
plt.plot(x_data, x_data**3, label = '$x^3$')
plt.legend()
plt.show()
import matplotlib.pyplot as plt import numpy as np from scipy.optimize import curve_fit x_data = np.linspace(0.05,1,101) y_data = 1/x_data noise = np.random.normal(0, 1, y_data.shape) y_data2 = y_data + noise def func_power(x, a, b): return a*x**b popt, pcov= curve_fit(func_power, x_data, y_data2) plt.figure(figsize=(4, 3)) plt.title('Losses') plt.ylabel('Loss') plt.xlabel('Epoch') plt.scatter(x_data, y_data2, label = 'data') plt.plot(x_data, popt[0] * x_data ** popt[1], label = ("$y = {{{}}}x^{{{}}}$").format(round(popt[0],2), round(popt[1],2))) plt.plot(x_data, x_data**3, label = '$x^3$') plt.legend() plt.show()
REF
https://stackoverflow.com/questions/53781815/superscript-format-in-matplotlib-plot-legend
https://stackoverflow.com/questions/21226868/superscript-in-python-plots