library(ggplot2)
############################################# # summarySE ############################################# ## Summarizes data. ## Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%). ## data: a data frame. ## measurevar: the name of a column that contains the variable to be summariezed ## groupvars: a vector containing names of columns that contain grouping variables ## na.rm: a boolean that indicates whether to ignore NA's ## conf.interval: the percent range of the confidence interval (default is 95%) summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE, conf.interval=.95, .drop=TRUE) { library(plyr) # New version of length which can handle NA's: if na.rm==T, don't count them length2 <- function (x, na.rm=FALSE) { if (na.rm) sum(!is.na(x)) else length(x) } # This does the summary. For each group's data frame, return a vector with # N, mean, and sd datac <- ddply(data, groupvars, .drop=.drop, .fun = function(xx, col) { c(N = length2(xx[[col]], na.rm=na.rm), mean = mean (xx[[col]], na.rm=na.rm), sd = sd (xx[[col]], na.rm=na.rm) ) }, measurevar ) # Rename the "mean" column datac <- rename(datac, c("mean" = measurevar)) datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean # Confidence interval multiplier for standard error # Calculate t-statistic for confidence interval: # e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1 ciMult <- qt(conf.interval/2 + .5, datac$N-1) datac$ci <- datac$se * ciMult return(datac) } ############################################# # Sample data ############################################# library(ggplot2) tg <- ToothGrowth head(tg) tgc <- summarySE(tg, measurevar="len", groupvars=c("supp","dose")) tgc ############################################# # Line graphs ############################################# # Standard error of the mean ggplot(tgc, aes(x=dose, y=len, colour=supp)) + geom_errorbar(aes(ymin=len-se, ymax=len+se), width=.1) + geom_line() + geom_point() # The errorbars overlapped, so use position_dodge to move them horizontally pd <- position_dodge(0.1) # move them .05 to the left and right ggplot(tgc, aes(x=dose, y=len, colour=supp)) + geom_errorbar(aes(ymin=len-se, ymax=len+se), width=.1, position=pd) + geom_line(position=pd) + geom_point(position=pd) # Use 95% confidence interval instead of SEM ggplot(tgc, aes(x=dose, y=len, colour=supp)) + geom_errorbar(aes(ymin=len-ci, ymax=len+ci), width=.1, position=pd) + geom_line(position=pd) + geom_point(position=pd) # Black error bars - notice the mapping of 'group=supp' -- without it, the error # bars won't be dodged! ggplot(tgc, aes(x=dose, y=len, colour=supp, group=supp)) + geom_errorbar(aes(ymin=len-ci, ymax=len+ci), colour="black", width=.1, position=pd) + geom_line(position=pd) + geom_point(position=pd, size=3) # A finished graph with error bars representing the standard error of the mean might # look like this. The points are drawn last so that the white fill goes on top of # the lines and error bars. ggplot(tgc, aes(x=dose, y=len, colour=supp, group=supp)) + geom_errorbar(aes(ymin=len-se, ymax=len+se), colour="black", width=.1, position=pd) + geom_line(position=pd) + geom_point(position=pd, size=3, shape=21, fill="white") + # 21 is filled circle xlab("Dose (mg)") + ylab("Tooth length") + scale_colour_hue(name="Supplement type", # Legend label, use darker colors breaks=c("OJ", "VC"), labels=c("Orange juice", "Ascorbic acid"), l=40) + # Use darker colors, lightness=40 ggtitle("The Effect of Vitamin C on Tooth Growth in Guinea Pigs") + expand_limits(y=0) + # Expand y range scale_y_continuous(breaks=0:20*4) + # Set tick every 4 theme_bw() + theme(legend.justification=c(1,0), legend.position=c(1,0)) # Position legend in bottom right ############################################# # Bar graphs ############################################# # Use dose as a factor rather than numeric tgc2 <- tgc tgc2$dose <- factor(tgc2$dose) # Error bars represent standard error of the mean ggplot(tgc2, aes(x=dose, y=len, fill=supp)) + geom_bar(position=position_dodge(), stat="identity") + geom_errorbar(aes(ymin=len-se, ymax=len+se), width=.2, # Width of the error bars position=position_dodge(.9)) # Use 95% confidence intervals instead of SEM ggplot(tgc2, aes(x=dose, y=len, fill=supp)) + geom_bar(position=position_dodge(), stat="identity") + geom_errorbar(aes(ymin=len-ci, ymax=len+ci), width=.2, # Width of the error bars position=position_dodge(.9)) ## A finished graph might look like this. ggplot(tgc2, aes(x=dose, y=len, fill=supp)) + geom_bar(position=position_dodge(), stat="identity", colour="black", # Use black outlines, size=.3) + # Thinner lines geom_errorbar(aes(ymin=len-se, ymax=len+se), size=.3, # Thinner lines width=.2, position=position_dodge(.9)) + xlab("Dose (mg)") + ylab("Tooth length") + scale_fill_hue(name="Supplement type", # Legend label, use darker colors breaks=c("OJ", "VC"), labels=c("Orange juice", "Ascorbic acid")) + ggtitle("The Effect of Vitamin C on Tooth Growth in Guinea Pigs") + scale_y_continuous(breaks=0:20*4) + theme_bw()
REF:
http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_%28ggplot2%29/
http://www.rdocumentation.org/packages/bear/functions/summarySE
http://www.cookbook-r.com/Manipulating_data/Summarizing_data/