在数据库中,常常会有Distinct Count的操作,比如,查看每一选修课程的人数:
select course, count(distinct sid)
from stu_table
group by course;
Hive
在大数据场景下,报表很重要一项是UV(Unique Visitor)统计,即某时间段内用户人数。例如,查看一周内app的用户分布情况,Hive中写HiveQL实现:
select app, count(distinct uid) as uv
from log_table
where week_cal = '2016-03-27'
Pig
与之类似,Pig的写法:
-- all users
define DISTINCT_COUNT(A, a) returns dist {
B = foreach $A generate $a;
unique_B = distinct B;
C = group unique_B all;
$dist = foreach C generate SIZE(unique_B);
}
A = load '/path/to/data' using PigStorage() as (app, uid);
B = DISTINCT_COUNT(A, uid);
-- <app, users>
A = load '/path/to/data' using PigStorage() as (app, uid);
B = distinct A;
C = group B by app;
D = foreach C generate group as app, COUNT($1) as uv;
-- suitable for small cardinality scenarios
D = foreach C generate group as app, SIZE($1) as uv;
DataFu 为pig提供基数估计的UDF datafu.pig.stats.HyperLogLogPlusPlus
,其采用HyperLogLog++算法,更为快速地Distinct Count:
define HyperLogLogPlusPlus datafu.pig.stats.HyperLogLogPlusPlus();
A = load '/path/to/data' using PigStorage() as (app, uid);
B = group A by app;
C = foreach B generate group as app, HyperLogLogPlusPlus($1) as uv;
Spark
在Spark中,Load数据后通过RDD一系列的转换——map、distinct、reduceByKey进行Distinct Count:
rdd.map { row => (row.app, row.uid) }
.distinct()
.map { line => (line._1, 1) }
.reduceByKey(_ + _)
// or
rdd.map { row => (row.app, row.uid) }
.distinct()
.mapValues{ _ => 1 }
.reduceByKey(_ + _)
// or
rdd.map { row => (row.app, row.uid) }
.distinct()
.map(_._1)
.countByValue()
同时,Spark提供近似Distinct Count的API:
rdd.map { row => (row.app, row.uid) }
.countApproxDistinctByKey(0.001)
实现是基于HyperLogLog算法:
The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available here.
或者,将Schema化的RDD转成DataFrame后,registerTempTable然后执行sql命令亦可:
val sqlContext = new SQLContext(sc)
val df = rdd.toDF()
df.registerTempTable("app_table")
val appUsers = sqlContext.sql("select app, count(distinct uid) as uv from app_table group by app")