最近在用Hive做多维数据分析,总结一些常用HiveQL命令。
1. 建表
以纯文本数据建表:
create table `dmp.dim_con_adx_id_name` (
`adx_id` string comment 'ADX ID'
, `adx_name` string comment 'ADX名称'
, `update_dt` string comment '更新时间(天粒度)'
)
comment 'ADX的ID与名称映射表'
row format delimited
fields terminated by ','
stored as textfile
;
若未指定为外部表(external table),则默认为托管表(managed table)。二者的区别在于load与drop操作:托管表用load data inpath
加载数据(路径可为本地目录,也可是HDFS目录),该操作会将该文件放在HDFS目录:/user/hive/warehouse/ 下;而外部表的数据是在location
中指定,一般配合partition描述数据的生成信息;drop托管表时会将元数据与/user/hive/warehouse/下的数据一起删掉,而drop外部表时只会删除元数据。将本地文件加载到托管表:
load data local inpath 'adx.csv' overwrite into table dmp.dim_con_adx_id_name;
以orc file数据建外部表表:
create external table `dmp.dwd_evt_ad_user_action_di` (
`uid` string comment '用户ID'
, `adx_name` string comment 'ADX名称'
, `media_name` string comment '媒体名称'
, `is_exposure` string comment '是否曝光'
, `is_click` string comment '是否点击'
)
comment '广告用户点击天表'
partitioned by (dt string comment '天分区')
stored as orc
location '/<hdfs path>'
;
2. Partition
增加partition并指定location:
alter table dmp.dwd_evt_ad_user_action_di add if not exists partition (dt='20160520') location '20160520';
重新设置partition的location:
-- must be an absolute path
alter table dmp.dwd_evt_ad_user_action_di partition (dt='20160520') set location '<hdfs path>';
删除partition
alter table dmp.dwd_evt_ad_user_action_di drop if exists partition (dt='20160520') ignore protection;
查看所有的paritition,以及查看某一partition的详细信息:
show partitions dwd_evt_ad_user_action_di;
describe formatted dwd_evt_ad_user_action_di partition (dt='20160520');
3. UDF
Hive的UDF非常丰富,基本能满足大部分的需求。
正则匹配获取相应字符串:
regexp_extract(dvc_model, '(.*)_(.*)', 2) as imei
复杂数据类型map、struct、指定schema的struct、array、union的构造如下:
map(key1, value1, key2, value2, ...)
struct(val1, val2, val3, ...)
named_struct(name1, val1, name2, val2, ...)
array(val1, val2, ...)
create_union(tag, val1, val2, ...)
获取复杂数据类型的某列值:
array: A[n]
map: M[key]
struct: S.x
条件判断case when,比如,在left join中指定默认值:
select uid
, media
, case
when b.tags is NULL then array(named_struct('tag','EMPTY', 'label','EMPTY')) else b.tags
end as tags
from (
select uid
from dwd_evt_ad_user_action_di
where dt = '{biz_dt}'
and is_exposure = '1'
) a
left outer join dwb_par_multi_user_tags_dd b
on a.uid = b.uid;
4. UDTF
UDTF主要用来对复杂数据类型进行平铺操作,比如,explode平铺array与map,inline平铺array<struct>
;这种内置的UDTF要与lateral view配合使用:
select myCol1, col2 FROM baseTable
lateral view explode(col1) myTable1 AS myCol1;
select uid
, tag
, label
from dwb_par_multi_user_tags_dd
lateral view inline(tags) tag_tb;
-- tags: array<struct<tag:string,label:string>>
5. 多维分析
Hive 提供grouping set、rollup、cube关键字进行多维数据分析,可以解决自定义的维度组合、上钻维度((n+1)种)组合、所有的维度组合((2^n)种)的需求。比如:
SELECT a, b, SUM( c )
FROM tab1
GROUP BY a, b GROUPING SETS ( (a, b), a, b, ( ) )
-- equivalent aggregate query with group by
SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b
UNION
SELECT a, null, SUM( c ) FROM tab1 GROUP BY a, null
UNION
SELECT null, b, SUM( c ) FROM tab1 GROUP BY null, b
UNION
SELECT null, null, SUM( c ) FROM tab1
GROUP BY a, b, c, WITH ROLLUP
-- is equivalent to
GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (a), ( ))
GROUP BY a, b, c WITH CUBE
-- is equivalent to
GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (b, c), (a, c), (a), (b), (c), ( ))
此外,Hive还提供了GROUPING__ID
函数对每一组合的维度进行编号,以区分该统计属于哪一维度组合,比如:
select adx_name, media_name, grouping__id, count(*) as pv
from dwd_evt_ad_user_action_di
group by adx_name, media_name with rollup;
以指定分隔符保存结果到本地目录:
explain
INSERT OVERWRITE LOCAL DIRECTORY '/home/<path>/<to>'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ' '
select media_name, count(distinct uid) as uv
from dwd_evt_ad_user_action_di
where day_time = '2016-05-20'
and is_exposure = '1'
group by media_name;