zoukankan      html  css  js  c++  java
  • 常用HiveQL总结

    最近在用Hive做多维数据分析,总结一些常用HiveQL命令。

    1. 建表

    以纯文本数据建表:

    create table `dmp.dim_con_adx_id_name` (
    	`adx_id` string comment 'ADX ID'
    	, `adx_name` string comment 'ADX名称'
    	, `update_dt` string comment '更新时间(天粒度)'
    )
    comment 'ADX的ID与名称映射表'
    row format delimited 
    fields terminated by ','
    stored as textfile
    ;
    

    若未指定为外部表(external table),则默认为托管表(managed table)。二者的区别在于load与drop操作:托管表用load data inpath加载数据(路径可为本地目录,也可是HDFS目录),该操作会将该文件放在HDFS目录:/user/hive/warehouse/ 下;而外部表的数据是在location中指定,一般配合partition描述数据的生成信息;drop托管表时会将元数据与/user/hive/warehouse/下的数据一起删掉,而drop外部表时只会删除元数据。将本地文件加载到托管表:

    load data local inpath 'adx.csv' overwrite into table dmp.dim_con_adx_id_name;
    

    以orc file数据建外部表表:

    create external table `dmp.dwd_evt_ad_user_action_di` (
        `uid` string comment '用户ID'
        , `adx_name` string comment 'ADX名称'
        , `media_name` string comment '媒体名称'
        , `is_exposure` string comment '是否曝光'
        , `is_click` string comment '是否点击'
    )
    comment '广告用户点击天表'
    partitioned by (dt string comment '天分区')
    stored as orc
    location '/<hdfs path>'
    ;
    

    2. Partition

    增加partition并指定location:

    alter table dmp.dwd_evt_ad_user_action_di add if not exists partition (dt='20160520') location '20160520';
    

    重新设置partition的location:

    -- must be an absolute path
    alter table dmp.dwd_evt_ad_user_action_di partition (dt='20160520') set location '<hdfs path>';  
    

    删除partition

    alter table dmp.dwd_evt_ad_user_action_di drop if exists partition (dt='20160520') ignore protection;
    

    查看所有的paritition,以及查看某一partition的详细信息:

    show partitions dwd_evt_ad_user_action_di;
    
    describe formatted dwd_evt_ad_user_action_di partition (dt='20160520');
    

    3. UDF

    Hive的UDF非常丰富,基本能满足大部分的需求。

    正则匹配获取相应字符串:

    regexp_extract(dvc_model, '(.*)_(.*)', 2) as imei
    

    复杂数据类型map、struct、指定schema的struct、array、union的构造如下:

    map(key1, value1, key2, value2, ...)
    struct(val1, val2, val3, ...)
    named_struct(name1, val1, name2, val2, ...)
    array(val1, val2, ...)
    create_union(tag, val1, val2, ...)
    

    获取复杂数据类型的某列值:

    array: A[n]
    map: M[key]
    struct: S.x
    

    条件判断case when,比如,在left join中指定默认值:

    select uid
    	, media
    	, case 
    		when b.tags is NULL then array(named_struct('tag','EMPTY', 'label','EMPTY')) 		else b.tags
    	end as tags
    from (
    	select uid
        from dwd_evt_ad_user_action_di
        where dt = '{biz_dt}'
        	and is_exposure = '1'
    ) a
    left outer join dwb_par_multi_user_tags_dd b 
    on a.uid = b.uid;
    

    4. UDTF

    UDTF主要用来对复杂数据类型进行平铺操作,比如,explode平铺array与map,inline平铺array<struct>;这种内置的UDTF要与lateral view配合使用:

    select myCol1, col2 FROM baseTable
    lateral view explode(col1) myTable1 AS myCol1;
    
    select uid
    	, tag
    	, label
    from dwb_par_multi_user_tags_dd
    lateral view inline(tags) tag_tb;
    -- tags: array<struct<tag:string,label:string>>
    

    5. 多维分析

    Hive 提供grouping set、rollup、cube关键字进行多维数据分析,可以解决自定义的维度组合、上钻维度((n+1)种)组合、所有的维度组合((2^n)种)的需求。比如:

    SELECT a, b, SUM( c ) 
    FROM tab1 
    GROUP BY a, b GROUPING SETS ( (a, b), a, b, ( ) )
    
    -- equivalent aggregate query with group by
    SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b
    UNION
    SELECT a, null, SUM( c ) FROM tab1 GROUP BY a, null
    UNION
    SELECT null, b, SUM( c ) FROM tab1 GROUP BY null, b
    UNION
    SELECT null, null, SUM( c ) FROM tab1
    
    
    GROUP BY a, b, c, WITH ROLLUP 
    -- is equivalent to 
    GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (a), ( ))
    
    
    GROUP BY a, b, c WITH CUBE 
    -- is equivalent to 
    GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (b, c), (a, c), (a), (b), (c), ( ))
    

    此外,Hive还提供了GROUPING__ID函数对每一组合的维度进行编号,以区分该统计属于哪一维度组合,比如:

    select adx_name, media_name, grouping__id, count(*) as pv
    from dwd_evt_ad_user_action_di
    group by adx_name, media_name with rollup;
    

    以指定分隔符保存结果到本地目录:

    explain
    INSERT OVERWRITE LOCAL DIRECTORY '/home/<path>/<to>' 
    ROW FORMAT DELIMITED 
    FIELDS TERMINATED BY '	' 
    select media_name, count(distinct uid) as uv
    from dwd_evt_ad_user_action_di 
    where day_time = '2016-05-20' 
    	and is_exposure = '1'
    group by media_name;
    
  • 相关阅读:
    mySQL如何在查询的结果前添加序号
    bootstrap 列表前添加序号 1.10版本
    sql 如何优先显示不为空的字段 并进行排序
    java面向对象总结
    线程总结(二)
    数据库索引介绍(转载)
    线程总结(一)
    GUI图形界面编程之事件处理机制
    Eclipse快捷键大全(转载)
    JDBC数据库编程总结
  • 原文地址:https://www.cnblogs.com/en-heng/p/5513176.html
Copyright © 2011-2022 走看看