题目链接:https://www.luogu.org/problemnew/show/P4884
套路的将(111...1)记做(frac{10^n-1}{9}),去分母移项的(10^nequiv9k+1(mod m))
直接(BSGS)?中间乘会爆long long!
使用龟速乘?这个(O(log))的时间可以让你完美的爆掉
来看一个真正的快速乘(from sxyugao)
[a*b=a*(L+R)=a*L+a*R
]
其中(b=L+R),我们让(L)取(b)的前(x)位,(R)取(b)的后(x)位即可
真正的(O(1))快速乘
#include<iostream>
#include<string.h>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<unordered_map>
using namespace std;
#define int long long
#define lowbit(x) (x)&(-x)
#define sqr(x) (x)*(x)
#define fir first
#define sec second
#define rep(i,a,b) for (register int i=a;i<=b;i++)
#define per(i,a,b) for (register int i=a;i>=b;i--)
#define maxd 1000000007
#define eps 1e-6
typedef long long ll;
const int N=100000;
const double pi=acos(-1.0);
ll k,m;
unordered_map<ll,int> mp;
int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
}
ll mul(ll x,ll y,ll p)
{
if ((x>1e9) || (y>1e9))
{
ll l=x*(y>>25ll)%p*(1ll<<25)%p,
r=x*(y&((1ll<<25)-1))%p;
return (l+r)%p;
}
else return x*y%p;
}
ll qpow(ll x,ll y,ll p)
{
ll ans=1;
while (y)
{
if (y&1) ans=mul(ans,x,p);
x=mul(x,x,p);
y>>=1;
}
return ans;
}
ll bsgs(ll a,ll b,ll p)
{
a%=p;b%=p;
if (!a) return (b==0);
ll unit=sqrt(p)+1,tmp=b;
rep(i,0,unit-1)
{
mp[tmp]=i;
tmp=mul(tmp,a,p);
}
tmp=qpow(a,unit,p);ll sum=1;
rep(i,1,unit)
{
sum=mul(sum,tmp,p);
if (mp.count(sum)) return unit*i-mp[sum];
}
return -1;
}
signed main()
{
k=read();m=read();
printf("%lld",bsgs(10,k*9+1,m));
return 0;
}