zoukankan      html  css  js  c++  java
  • 专题4

    状压dp,关键在于用01串将过程中的状态进行压缩且便于存储。这边会涉及到位运算。

    由于位运算的优先级比(==)还低,所以记得频繁打上括号以免不幸。

    NC20240 互不侵犯King

    将每一行的摆放情况用01串来表示,这样就可以将状态压缩。用(f[i][j][k])表示第(i)行摆放情况为(k)且总共已经摆放了(j)个棋子。那么(f[i][j][k]+=f[i-1][j-num[k]][s]),其中(num[k])表示情况为(k)时需要的棋子数量。同时(k)与(s)必须满足:

    (((k>>1)&k )==0)

    ((k&s)==0, ((k>>1)&s)==0, ((k<<1)&s)==0)

    另外,各个情况需要的棋子数量可以进行预处理。

    #include<bits/stdc++.h>
    #define fast ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
    #define ll long long
    #define pb push_back
    using namespace std;
    const int maxn = 20;
    int f[maxn][100][(1<<10)+10];
    ll num[(1<<10)+10];
    void init()
    {
        for(int i=0;i<(1<<10);i++)
        {
            int m=i;
            while(m)
            {
                if(m%2) num[i]++;
                m/=2;
            }
        }
    }
    int main()
    {
        int n,k;
        init();
        cin>>n>>k;
        for(int i=0;i<(1<<n);i++)
        {
            if((i&(i<<1))!=0) continue;
            f[1][num[i]][i]=1;
        }
        for(int i=2;i<=n;i++)
        {
            for(int j=0;j<=k;j++)
            {
                for(int s=0;s<(1<<n);s++)
                {
                    if((s&(s<<1))!=0) continue;
                    if(num[s]>j) continue;
                    // cout<<i<<' '<<j<<' '<<s<<'
    ';
                    for(int t=0;t<(1<<n);t++)
                    {
                        if((s&t)==0 && ((s<<1)&t)==0 && ((s>>1)&t)==0)
                        {
                            f[i][j][s]+=f[i-1][j-num[s]][t];
                            //cout<<i<<' '<<j<<' '<<s<<' '<<' '<<j-num[s]<<' '<<t<<' '<<f[i][j][s]<<'
    ';
                        }
                    }
                }
            }
        }
        ll ans=0;
        for(int i=0;i<(1<<n);i++)
        {
            //cout<<i<<' '<<f[n][k][i]<<'
    ';
            ans+=f[n][k][i];
        }
        cout<<ans<<'
    ';
    }

    NC16886 炮兵阵地

    上一道题目的加强版,要求左右十字范围内两个都不能有友军,且所有的炮兵都需要站在平原上。

    那么首先我们对整张图进行状态压缩处理,用(0)表示平原,用(1)表示山地。再对每一排的士兵摆放状态进行状态压缩,(0)无(1)有。这样的设定会使得当这两者与运算结果为(1)时是非法的。

    用(f[s][i][j])表示第(s)行状态为(i),前一行状态为(j)时士兵的最大数量。此时枚举前两行的状态(k),当三者都合法时,状态转移方程为(f[s][i][j]=max(f[s][i][j],f[s-1][j][k]+num[i])),其中(num[i])表示(i)状态下有多少个士兵。

    另外,如果枚举所有状态会导致复杂度爆炸,因此,我们先预处理对于每一行而言合法的状态(即十字两格不能有友军),这样在数据范围拉满的情况下也就只有(60)种情况,这样就足够存下了。

    #include <bits/stdc++.h>
    #define ll long long
    #define pb push_back
    #define fast ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
    using namespace std;
    const int maxn = 110;
    string mp[maxn];
    int c[maxn];
    ll f[maxn][70][70]={0};
    vector<int> v;
    int num[70]={0};
    void init(int n)
    {
        for (int i = 0; i < (1 << n); i++)
        {
            if (!((i << 1) & i) && !((i << 2) & i))
                v.pb(i);
        }
    }
    int main()
    {
        int n, m;
        cin >> n >> m;
        init(m);
        for (int i = 0; i < n; i++)
        {
            cin >> mp[i];
        }
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<m;j++)
            {
                if(mp[i][j]=='P') c[i+1]=(c[i+1]<<1)+0;
                else c[i+1]=(c[i+1]<<1)+1;
            }
        }
        int len = v.size();
        for (int i = 0; i < len; i++)
        {
            int tmp = v[i];
            while (tmp)
            {
                num[i] += tmp % 2;
                tmp /= 2;
            }
        }
        for (int s = 1; s <= n; s++)
        {
            for (int i = 0; i < len; i++)
            {
                for(int j=0;j<len;j++)
                {
                    for(int k=0;k<len;k++)
                    {
                        if((v[i]&v[j]) || (v[i]&v[k]) || (v[j]&v[k]) || (v[i]&c[s]) || (v[j]&c[s-1]) || (v[k]&c[max(0,s-2)])) continue;
                        f[s][i][j]=max(f[s][i][j],f[s-1][j][k]+num[i]);
                    }
                }
            }
        }
        ll ans = 0;
        for (int i = 0; i < len; i++)
        {
            for (int j = 0; j < len; j++)
            {
                ans = max(ans, f[n][i][j]);
            }
        }
        cout << ans << '
    ';
    }

    NC16122 郊区春游

    NC16544 简单环

    这两道题写在一起是因为这两道题同属于TSP问题。

    TSP问题,又称旅行推销员问题,假设一个商人要拜访(n)个城市,每个城市只能拜访一次,并且最后回到原点,问所有路径中的最小权值。

    这类问题通常而言,用(f[i][j])表示(i)状态下并且当前处于(j)位置时的最小权值,(i)为(01)串,1表示已经拜访,0表示未拜访。

    另外,状态转移方程不仅仅局限于依靠过去推现在,也可以通过现在推将来。

    例如NC16122,状态转移方程可以写为:(f[i|nex][k]=min(f[i|nex][k],f[i][j]+G[vi[j]][vi[k]])),其中(nex=1<<(k-1))。

    另外对于这道题,先要进行连通性与最短路径的预处理,(floyd)即可。

    #include<bits/stdc++.h>
    #define ll long long
    #define pb push_back
    #define fast ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
    using namespace std;
    const int maxn = 210;
    const int INF = 0x3f3f3f3f;
    int n,m,r;
    int G[maxn][maxn];
    int f[1<<16][maxn];
    int size=10;
    int vi[20];
    void floyd()
    {
        for(int k=1;k<=n;k++)
        {
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                {
                    G[i][j]=min(G[i][j],G[i][k]+G[k][j]);
                }
            }
        }
    }
    int main()
    {
        fast;
        cin>>n>>m>>r;
        int u,v,w;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                G[i][j]=INF;
            }
        }
        for(int i=1;i<=r;i++)
        {
            cin>>vi[i];
        }
        for(int i=0;i<(1<<r);i++)
        {
            for(int j=1;j<=n;j++)
            {
                f[i][j]=INF;
            }
        }
        for(int i=1;i<=m;i++)
        {
            cin>>u>>v>>w;
            G[u][v]=w;
            G[v][u]=w;
        }
        floyd();
        for(int i=1;i<=r;i++)
        {
            f[1<<(i-1)][i]=0;
        }
        for(int i=1;i<(1<<r)-1;i++)
        {
            for(int j=1;j<=r;j++)
            {
                int sta=1<<(j-1);
                if(!(i&sta)) continue;
                for(int k=1;k<=r;k++)
                {
                    int nex=1<<(k-1);
                    if(nex&i) continue;
                    f[i|nex][k]=min(f[i|nex][k],f[i][j]+G[vi[j]][vi[k]]);
                }
            }
        }
        int ans=INF;
        for(int i=1;i<r;i++)
        {
            ans=min(ans,f[(1<<r)-1][i]);
        }
        cout<<ans<<'
    ';
    }

    那么对于另一道题,首先要求这个环要求终点要大于起点(不然统计会乱),状态转移方程与上一题类似,区别仅仅在于统计的是方案数量。转移之后,判断当前点与起点是否有边且环长度是否大于3。最后得到的结果需要除2(因为对于一个环可以顺时针也可以逆时针),那么这里就需要逆元。

    #include<bits/stdc++.h>
    #define pb push_back
    #define ppb pop_back
    #define ll long long
    #define fast ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
    using namespace std;
    const int maxn = 22;
    const ll mod = 998244353;
    bool G[maxn][maxn];
    ll f[1<<20][maxn];
    ll ans[maxn];
    int n,m,k;
    ll Pow(ll a,ll b)
    {
        if(b==0) return 1;
        if(b%2) return a*Pow(a,b-1)%mod;
        ll tmp=Pow(a,b/2);
        return tmp*tmp%mod;
    }
    int main()
    {
        fast;
        cin>>n>>m>>k;
        int u,v;
        for(int i=1;i<=m;i++)
        {
            cin>>u>>v;
            G[u][v]=1;
            G[v][u]=1;
        }
        for(int i=1;i<=n;i++)
        {
            f[1<<(i-1)][i]=1;
        }
        int len=(1<<n)-1;
        for(int i=1;i<=len;i++)
        {
            int s;
            for(int j=1;j<=n;j++)
            {
                if(i>>(j-1)&1)
                {
                    s=j;
                    break;
                }
            }
            for(int j=1;j<=n;j++)
            {
                int t=1<<(j-1);
                if(!(i&t)) continue;
                for(int k=s+1;k<=n;k++)
                {
                    int kk=1<<(k-1);
                    if(i&kk) continue;
                    if(G[j][k])
                    {
                        f[i|kk][k]=(f[i|kk][k]+f[i][j])%mod;
                    }
                }
                if(G[j][s])
                {
                    int len=__builtin_popcount(i);
                    if(len>=3)
                    {
                        ans[len%k]=(ans[len%k]+f[i][j])%mod;
                        // cout<<i<<' '<<j<<' '<<ans[0]<<'
    ';
                    }
                }
            }
        }
        int inv=Pow(2,mod-2);
        for(int i=0;i<k;i++)
        {
            cout<<ans[i]*inv%mod<<'
    ';
        }
    }

    POJ2411 Mondriaan's Dream

    棋盘覆盖问题,仅能用(1 imes 2)或者(2 imes 1)的骨牌去填充(h imes w)的棋盘。

    我们可以把每一行当前是否被覆盖进行状态压缩,用(1)表示已覆盖,(0)表示未覆盖。那么对于每一行而言,可以留出一定的(0)来给下一行覆盖(2 imes 1)的机会。

    那么考虑状态转移的条件。首先必须保证之前的行全部被填满,用(j)表示当前行状态,用(k)表示上一行状态,我们需要把上一行中(0)的位置填满,不然之后无论如何都不能做到密铺。其次,在当前行中排除(2 imes 1)的骨牌,剩下的(1)就是(1 imes 2)骨牌的位置,那么就需要保证连续(1)的个数必须为偶数。这里可以进行预处理,存下所有合法的状态。

    剩下就是状态转移。当上述条件全部满足时,(f[i][j]=sum f[i-1][k]),初始条件为(f[0][len-1]=1),其中(len=(1<<w))。

    #include<bits/stdc++.h>
    #define ll long long
    #define pb push_back
    #define fast ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
    using namespace std;
    int state[1<<11];
    ll f[13][1<<11];
    void init()
    {
        for(int i=0;i<(1<<11);i++)
        {
            state[i]=1;
            int j=i;
            int tmp=0;
            while(j)
            {
                if(j%2==1) tmp++;
                else
                {
                    if(tmp%2)
                    {
                        state[i]=0;
                        break;
                    }
                    tmp=0;
                }
                j/=2;
            }
            if(tmp%2) state[i]=0;
        }
    }
    int main()
    {
        fast;
        int h,w;
        init();
        while(cin>>h>>w)
        {
            if(h==0 && w==0) break;
            int len=(1<<w);
            for(int i=0;i<=h;i++)
            {
                for(int j=0;j<len;j++)
                {
                    f[i][j]=0;
                }
            }
            f[0][len-1]=1;
            // for(int i=0;i<len;i++)
            // {
            //     cout<<i<<' '<<state[i]<<'
    ';
            // }
            for(int i=1;i<=h;i++)
            {
                for(int j=0;j<len;j++)
                {
                    for(int k=0;k<len;k++)
                    {
                        if(state[j&k] && (j|k)==len-1)
                        {
                            f[i][j]+=f[i-1][k];
                        }
                    }
                }
            }
            cout<<f[h][len-1]<<'
    ';
        }
    }
  • 相关阅读:
    jmeter(十八)属性和变量
    jmeter(十七)逻辑控制器
    jmeter(九)分布式测试
    jmeter(八)HTTP属性管理器HTTP Cookie Manager、HTTP Request Defaults
    jmeter(七)函数
    jmeter(六)关联
    jmeter(五)集合点
    jmeter(四)检查点
    jmeter(三)参数传递
    jmeter(二)元件的作用域与执行顺序
  • 原文地址:https://www.cnblogs.com/endlesskkk/p/15418952.html
Copyright © 2011-2022 走看看