ETL是什么
ETL是Extract Transform Load三个英文单词的缩写 中文意思就是抽取、转换、加载。说到ETL就必须提到数据仓库。
那么怎么把数据弄到数据仓库里去呢,其中用到的一个技术就是ETL。
下面给下ETL的详细解释定义:
ETL(Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程)作为DW的核心和灵魂,能够按照统一的规则集成并提高数据的价值,是负责完成数据从数据源向目标数据仓库转化的过程,是实施数据仓库的重要步骤。如果说数据仓库的模型设计是一座大厦的设计蓝图,数据是砖瓦的话,那么ETL就是建设大厦的过程。在整个项目中最难部分是用户需求分析和模型设计,而ETL规则设计和实施则是工作量最大的,约占整个项目的60%~80%,这是国内外从众多实践中得到的普遍共识。
ETL是数据抽取(Extract)、清洗(Cleaning)、转换(Transform)、装载(Load)的过程。是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。
于是,企业如何通过各种技术手段,并把数据转换为信息、知识,已经成了提高其核心竞争力的主要瓶颈。而ETL则是主要的一个技术手段。
做数据仓库系统,ETL是关键的一环。说大了,ETL是数据整合解决方案,说小了,就是倒数据的工具。
现在来说说ETL技术用到的工具,常用的有Informatica、Datastage、Beeload、Kettle等。目前只用过kettle,所以这里只对kettle做描述。
kettle是一款国外开源的ETL工具,纯java编写,可以在Window、Linux、Unix上运行,kettle 3版本需要安装 3以上都是绿色版无需安装。
提醒的是kettle运行 需要机器有JRE环境
Kettle这个ETL工具集,它允许你管理来自不同数据库的数据,通过提供一个图形化的用户环境来描述你想做什么。
Kettle中有两种脚本文件,transformation和job,transformation完成针对数据的基础转换,job则完成整个工作流的控制。