zoukankan      html  css  js  c++  java
  • Nim游戏变种——取纽扣游戏

      (2017腾讯实习生校招笔试题)Calvin和David正在玩取纽扣游戏,桌上一共有16个纽扣,两人轮流来取纽扣,每人每次可以选择取1个或3个或6个(不允许不取),谁取完最后的纽扣谁赢。Cavin和David都非常想赢得这个游戏,如果Cavin可以先取,Cavin的必胜策略下第一步应该取
      A、1个
      B、3个
      C、6个
      D、Cavin没有必胜策略

      解析:这道题是Nim游戏的变种,Nim游戏是博弈论中最经典的模型(之一)。

      根据博弈论的性质:对于巴什博弈,存在必胜点必败点,是指在当前这个点上的先手玩家是“必胜”(指的是采取必胜策略下的必胜)还是必败。对于一个点,如果它的下一步全是必胜点,那么显然无论它如何走都是让对手进入必胜点,所以当前这个点就是必败点;如果下一步中存在一个必败点,那么当前这一步的玩家就可以选择让对手进入这个必败点的走法,所以当前这个点就是是必胜点

      对这题来说,显然0的时候是必败点;看1,只能选择拿走1个,变成0,0是必败点,1可以到达必败点,所以1是必胜点;然后看2,2的下一步只能选择拿走1个变成1,1是必胜点,2只能到达必胜点,所以2是必败点;3的下一步2和0,都是必败点,3可以到达必败点,所以3是必胜点.......同理,当推到16的时候,下一步有三种走法,分别是15,13,10,由前面推理过程,15和10都是必胜点,只有13是必败点。因此先手应该选择拿走3个棋子,让对手进入必败点。

      详细推理过程如下表(自上而下):

    必败点 必胜点
    0  
      1
    2  
      3
    4  
      5
      6
      7
      8
    9  
      10
    11  
      12
    13  
      14
      15
      16

      我们还可以用程序验证我们的答案,C++源码如下:

    #include "iostream"
    #include "vector"
    #include "string.h"
    using namespace std;
    
    int main()
    {
        int button_num = 16;             // 共有16个纽扣
        int legal_get[3] = { 1,3,6 };    // 每人每次可以选择取1个或3个或6个
        bool win_point[17];              // 标识剩下i个纽扣的局面下,是否为必胜点
        int win_to_get[17];              // 必胜点下,采用必胜策略该取几个纽扣
    
        win_point[0] = false;                    // 0是必败点
        for (int i = 1; i <= button_num; i++)
        {
            win_point[i] = false;                // 初始化均为必败点
            for (int j = 0; j < 3; j++)
            {
                if (legal_get[j] <= i && !win_point[i - legal_get[j]])// 若下一步中存在一个必败点,则当前这个点就是是必胜点。
                {
                    win_point[i] = true;
                }
                if (win_point[i])                
                {
                    win_to_get[i] = legal_get[j];    // 记录下必胜点下,采用必胜策略该取几个纽扣让对手进入必败点
                    break;
                }
            }
        }
        if (win_point[button_num])    // 16为必胜点
        {
            cout << "Calvin有必胜策略,制胜的第一步应该取" << win_to_get[button_num] << "个纽扣" << endl;
        }
        else
            cout << "Cavin没有必胜策略" << endl;
        return 0;
    }

      

      参考资料:http://www.guokr.com/blog/777525/

           https://www.zhihu.com/question/42098847/answer/93624200

  • 相关阅读:
    数据结构学习(一)、线性表
    内容太多用省略号代替、内容不换行,鼠标移上去显示详情
    时间格式化
    51Nod--1018排序
    51Nod--1085背包问题
    51Nod--1049最大子段和
    51Nod--1051最大子矩阵和(DP入门)
    POj1852--Ants
    c# static用法
    group by用法
  • 原文地址:https://www.cnblogs.com/eniac12/p/5400309.html
Copyright © 2011-2022 走看看