zoukankan      html  css  js  c++  java
  • 【模板篇】splay(填坑)+模板题(普通平衡树)

    划着划着水一不小心NOIP还考的凑合了…
    所以退役的打算要稍微搁置一下了…
    要准备准备省选了….
    但是自己已经啥也不会了…
    所以只能重新拾起来…
    从splay开始吧…

    splay我以前扔了个板子来着, 之前理解的还是不够深入于是就一直没有填坑…
    现在又重新拾了一下就来填坑…
    不过讲平衡树要画好多图的说OvO

    BST(二叉查找树)大家应该都知道吧, 所以就不讲了…
    大家也都知道BST会被卡成一条链, 复杂度动不动就退化成O(n)
    所以就出现了各种各样的二叉平衡树…

    splay是个很年轻的数据结构…好像是什么1985年由tarjan提出的…
    splay的主要特点就是不怎么平衡, 但是一直在转所以深度并不会太深…
    而且会将最近访问的条目放在根的附近, 这样重复访问的时候效率会加快..
    (听上去好像挺有用, 但实际生活更多用的还是RBT之类的吧?)

    splay的主要操作就是rotate和splay(招牌)的说…
    其他的操作就是BST的操作了Emmmm…
    我们一个一个讲:

    rotate

    rotate跟很多其他什么二叉平衡树是一样的…
    splay的旋转
    由题意, 如图示, 尽管箭头画的丑的一笔大小都不一样但是凑合着看吧… 旋转完还是保持二叉排序树性质的~
    我们来分析一下旋转的过程
    假如我们要旋转4号节点(下面称为x), 就是上面左图箭头指的那个节点..
    因为他是左儿子, 所以要右旋(有些人喜欢分左右旋, 但是你把左儿子左旋是几个意思←_←)
    然后就是中图红色和绿色的拆边和建边:
    说明好麻烦啊, 上伪代码吧:

    if grandfa->ch[0]==fa fa_dir=0 else fa_dir=1 //确定父亲是祖父的哪个儿子
    grandfa->ch[fa_dir]=x //将这个儿子置为x
    if fa->ch[0]==x dir=0 else dir=1 //确定x是父亲的哪个儿子
    fa->ch[dir]=x->ch[dir^1] //将x父亲的dir儿子置为x的dir另一侧的儿子 (为了保持性质,这很显然)
    x->ch[dir^1]=fa //将x变为x原来父亲的父亲(没大没小..) (为了保持性质,要放在dir的对侧)
    //当然这里要更新所有改变父子关系中所有的父亲咯~

    以上几步如果不乱的话应该顺序是无所谓的吧…(不过还是形成一个正确的板子背过的好, 不然老是挂(这几天都不知道把rotate里面的句子调了多少遍了))
    然后我们就能整理出这样的代码:

    void rotat(node *now){ //这里强行去掉一个e是防止与STL冲突(虽然好像无所谓??)
        int wh=now->getwh(); node *fa=now->fa,*fafa=fa->fa;
        if(fafa!=null) fafa->ch[fa->getwh()]=now;
        fa->setch(wh,now->ch[wh^1]);    
        now->setch(wh^1,fa); //这里的setch是包括设置儿子和父亲的
        now->fa=fafa;
    }

    rotate就是这样…
    其实自己多画一画就比较方便理解…

    splay

    splay之所以叫splay是因为splay有个叫splay的操作..(绕口令)
    我们说过, splay会把最近访问的点转到根上…(其实就是伸个懒腰….把这个点扭上去)
    这里的splay操作有一种很显然的做法: 就是不停的rotate
    这种操作叫做单旋(敲黑板) 这么显然的做法显然是会被卡的…比如转着转着就特别特别不平衡了什么的…
    (丧心病狂的出题人可能会先问这个端点, 再问那个端点, 就炸了…)
    这么写的做法我们亲切地称为spaly(来找不同啊)
    所以我们为了保持比较平衡的splay(其实仍然歪七扭八的…) 我们要双旋(又敲黑板)
    Emmmm
    双旋的过程, 我们要判断x和x的父亲是不是同向的(即都是自己父亲的左儿子or右儿子)
    - 如果是同向的, 就要先转父亲再转x
    - 否则转2遍x…
    其实为什么这样做还是挺明显的, 可以自己画一下rotate的过程看看不同的顺序会对平衡产生什么差异(才不是懒得画呢╭(╯^╰)╮)
    由于rotate已经写好了, 我们的splay就呼之欲出了

    //将节点now转到tar的下一位上(Emmmm..这个地方划重点,不是转到tar上哦~) 若tar为null则表示转到根上
    void splay(node *now,node *tar){
        for(;now->fa!=tar;rotat(now)) //因为不是转到tar上所以是fa!=tar...
            if(now->fa->fa!=tar) //防止双旋转过,如果只转一下就到那就不双旋了
                //反正双旋的第二步都是转我们就只转第一步就好了(因为第二步被压到for循环里去了2333)
                now->getwh()==now->fa->getwh()?rotat(now->fa):rotat(now);
        if(tar==null) rt=now; //转到根上就要重置根...
    }

    反正就是这样… 剩下的就是bst的操作了OvO
    用其他的什么树也都能搞定了OvO

    例题的话我们就用普通平衡树吧OvO
    我们来逐个分析操作:
    1.插入一个数x
    这不是bst操作么… 用从根开始找到该插入的位置插入即可…

    void insert(int val){
        node *last = null, *now = rt, *nnow = NEW(); //NEW是自定义函数(不太会重载new)
        nnow->val = val; nnow->cnt = nnow->sz = 1; //申请新节点
        while (now != null){
            last = now; //last存储父亲
            if (nnow->val == now->val){ //如果树上已经有了数值相同的点
                now->cnt++; now->sz++; //直接修改cnt和size就行了
                splay(now, null); return; //把最近访问的节点旋到根上
            }
            if (nnow->val<now->val) now = now->ch[0]; //如果比当前节点值小显然要往左走
            else now = now->ch[1]; //否则往右走
        }
        if (last == now) rt = nnow; //如果没有根当前点就是根
        else if (nnow->val<last->val) last->setch(0, nnow); //如果小于最后走到的位置就设为左叶子
        else last->setch(1, nnow); //否则右叶子
        splay(nnow, null); //转到根上
    }

    2.删除数x
    在此之前我们要先找到x是不是OvO…
    所以……bst的查找!!!

    node *find(int val){
        node *now = rt;
        while (now != null){
            if (now->val == val) break; //找到了
            if (now->val<val) now = now->ch[1]; //当前节点小于要查询的值 往右走 
            else now = now->ch[0]; //否则往左走
        }
        if (now != null) splay(now, null); //找到了就转到根上
        return now;
    }

    找到这个点的位置之后删掉就完了OvO.. 不过要分类讨论(注意这里并没有回收内存所以并不是真的删掉了OvO 如果开始的时候里面有点那要池子要开双倍的)

    void delet(int val){ //不要问我为啥去个e... delete是关键字啊= =
        node *tar = find(val); //找到的时候就旋到根上了 这就很和善..
        if (tar == null) return; //没找到删个毛线啊
        if (tar->cnt>1){
            tar->cnt--; tar->sz--; return; //如果是重复的减去一个就行了很省事..
        }
    
        //无聊的分类讨论
        if (tar->ch[0] == null&&tar->ch[1] == null)
            rt = null; //如果这就是根 删了就完了
        else if (tar->ch[0] == null)
            tar->ch[1]->fa = null, rt = tar->ch[1]; //如果没有左子树,直接将右儿子作为根
        else if (tar->ch[1] == null)
            tar->ch[0]->fa = null, rt = tar->ch[0]; //如果没有右子树,直接将左儿子作为根
        else{ //左右儿子都有是最麻烦 但是最常见的..
            node *rch = tar->ch[0];
            while (rch->ch[1] != null) rch = rch->ch[1]; //我们要找到左儿子中最右的儿子来当新根...
            splay(rch, null); //把这个点转到根上
            rch->setch(1, tar->ch[1]); //把右儿子接到上面
            rch->fa = null; rt = rch; //更新一下新根信息
        }
    }

    3.查询x数的排名
    这个嘛= = 我们要维护每个点子树的大小…
    我们写一个update函数…

    void node::update(){
        sz=ch[0]->sz+ch[1]->sz+cnt; //左子树大小+右子树大小+该数值的个数
    }

    只要改变树形态(修改儿子的时候)调用就好了…(常数在哭泣…)
    查排名的时候就可以:

    int rank(int val){
        int ls = 0; //记录比走到当前节点前一定更小的数的个数..
        node *now = rt;
        while (now != null){
            if (now->val == val){
                //找到这个值就把小的数的个数和他左子树的大小+1作为名次..
                int ans = ls + now->ch[0]->sz + 1;
                //把当前查询的点转到根上..
                splay(now, null);
                return ans;
            }
            //还是比较大小然后分往左右走..
            if (now->val<val) ls += now->ch[0]->sz + now->cnt, now = now->ch[1];
            else now = now->ch[0];
        }
        return -1;
    }

    4.查排名为x的数
    不想写文字说明了OvO

    int pos(int k){
        int ls = 0; node *now = rt;
        while (now != null){
            int po = ls + now->ch[0]->sz;
            if (po + 1 <= k&&k <= po + now->cnt){
                splay(now, null); return now->val; //如果当前点符合要求就是他了(记得转到根上)
            }
            //还是判断左右...
            if (po<k) ls = po + now->cnt, now = now->ch[1];
            else now = now->ch[0];
        }
        return -1;
    }

    5.查询前驱(后继一样我就一起写了)

    int pre(int val){
        int ans = -INF; node *now = rt;
        while (now != null){
            //一路左右找就行...反正相等也不满足条件...
            if (now->val<val)
                ans = max(ans, now->val), now = now->ch[1];
            else now = now->ch[0];
        }
        return ans;
    }
    int nxt(int val){
        int ans = INF; node *now = rt;
        while (now != null){
            if (now->val <= val) now = now->ch[1];
            else ans = min(ans, now->val), now = now->ch[0];
        }
        return ans;
    }

    就这样咯~ 下面附上完整的代码:

    #include <cstdio>
    const int N = 100010;
    const int INF = ~0U >> 1;
    inline int gn(int a = 0, char c = 0, int f = 1){
        for (; (c<'0' || c>'9') && c != '-'; c = getchar()); if (c == '-') c = getchar(), f = -1;
        for (; c >= '0'&&c <= '9'; c = getchar()) a = a * 10 + c - '0'; return a*f;
    }
    inline int max(const int &a, const int &b){ return a>b ? a : b; }
    inline int min(const int &a, const int &b){ return a<b ? a : b; }
    struct node{
        int sz, val, cnt;
        node *ch[2], *fa;
        void update();
        int getwh();
        void setch(int wh, node *child);
    }*rt, *null, pool[N]; int tot = 0;
    void node::update(){
        sz = ch[0]->sz + ch[1]->sz + cnt;
    }
    int node::getwh(){
        return fa->ch[0] == this ? 0 : 1;
    }
    void node::setch(int wh, node *child){
        ch[wh] = child;
        if (child != null) child->fa = this;
        update();
    }
    node *NEW(){
        node *now = pool + ++tot;
        now->sz = now->cnt = now->val = 0;
        now->ch[0] = now->ch[1] = now->fa = null;
        return now;
    }
    void init(){
        null = pool;
        null->ch[0] = null->ch[1] = null;
        null->cnt = null->sz = null->val = 0;
        rt = null;
    }
    void rotate(node *now){
        node *fa = now->fa, *fafa = fa->fa;
        int wh = now->getwh();
        if (fafa != null) fafa->ch[fa->getwh()] = now;
        fa->setch(wh, now->ch[wh ^ 1]);     
        now->setch(wh ^ 1, now->fa);
        now->fa = fafa;
    }
    void splay(node *now, node *tar){
        for (; now->fa != tar; rotate(now))
        if (now->fa->fa != tar)
            now->getwh() == now->fa->getwh() ? rotate(now->fa) : rotate(now);
        if (tar == null) rt = now;
    }
    node *find(int val){
        node *now = rt;
        while (now != null){
            if (now->val == val) break;
            if (now->val<val) now = now->ch[1];
            else now = now->ch[0];
        }
        if (now != null) splay(now, null);
        return now;
    }
    void insert(int val){
        node *last = null, *now = rt, *nnow = NEW();
        nnow->val = val; nnow->cnt = nnow->sz = 1;
        while (now != null){
            last = now;
            if (nnow->val == now->val){
                now->cnt++; now->sz++;
                splay(now, null); return;
            }
            if (nnow->val<now->val) now = now->ch[0];
            else now = now->ch[1];
        }
        if (last == now) rt = nnow;
        else if (nnow->val<last->val) last->setch(0, nnow);
        else last->setch(1, nnow);
        splay(nnow, null);
    }
    void delet(int val){
        node *tar = find(val);
        if (tar == null) return;
        if (tar->cnt>1){
            tar->cnt--; tar->sz--; return;
        }
    
        //无聊的分类讨论
        if (tar->ch[0] == null&&tar->ch[1] == null)
            rt = null;
        else if (tar->ch[0] == null)
            tar->ch[1]->fa = null, rt = tar->ch[1];
        else if (tar->ch[1] == null)
            tar->ch[0]->fa = null, rt = tar->ch[0];
        else{
            node *rch = tar->ch[0];
            while (rch->ch[1] != null) rch = rch->ch[1];
            splay(rch, null);
            rch->setch(1, tar->ch[1]);
            rch->fa = null; rt = rch;
        }
    }
    int pre(int val){
        int ans = -INF; node *now = rt;
        while (now != null){
            if (now->val<val)
                ans = max(ans, now->val), now = now->ch[1];
            else now = now->ch[0];
        }
        return ans;
    }
    int nxt(int val){
        int ans = INF; node *now = rt;
        while (now != null){
            if (now->val <= val) now = now->ch[1];
            else ans = min(ans, now->val), now = now->ch[0];
        }
        return ans;
    }
    int rank(int val){
        int ls = 0; node *now = rt;
        while (now != null){
            if (now->val == val){
                int ans = ls + now->ch[0]->sz + 1; 
                splay(now, null);
                return ans;
            }
            if (now->val<val) ls += now->ch[0]->sz + now->cnt, now = now->ch[1];
            else now = now->ch[0];
        }
        return -1;
    }
    int pos(int k){
        int ls = 0; node *now = rt;
        while (now != null){
            int po = ls + now->ch[0]->sz;
            if (po + 1 <= k&&k <= po + now->cnt){
                splay(now, null); return now->val;
            }
            if (po<k) ls = po + now->cnt, now = now->ch[1];
            else now = now->ch[0];
        }
        return -1;
    }
    void debugtree(node *nod){
        if (nod->ch[0] != null) debugtree(nod->ch[0]);
        printf("%d
    ", nod->val);
        if (nod->ch[1] != null) debugtree(nod->ch[1]);
    }
    int main(){
        init(); int n = gn();
        for (int i = 1; i <= n; ++i){
            int opt = gn(), x = gn();
            switch (opt){
            case 1:insert(x);break;
            case 2:delet(x); break;
            case 3:printf("%d
    ", rank(x));  break;
            case 4:printf("%d
    ", pos(x));   break;
            case 5:printf("%d
    ", pre(x));   break;
            case 6:printf("%d
    ", nxt(x));   break;
            }
            //puts("*********");
            //debugtree(rt);
        }
    }

    就这样吧…
    终于把自己挖的坑填上了…
    自己挖的坑跪着也要填完。。(累觉不爱

  • 相关阅读:
    WPF之SharpAvi视频录制(AVI)
    WPF之录制桌面视频(FFMPeg)
    Unity3d之Navigation导航系统(AII敌人)
    Unity3D之InstantOC(遮挡剔除)
    Unity3D之Camera
    Unity3D之Material(材质、着色器、纹理)
    分布式服务弹性框架“Hystrix”实践与源码研究(一)
    平安某金所奇葩的面经-关于幂等和ROA设计的反思
    来自GitHub的Android UI开源项目
    JavaScript实现MVVM之我就是想监测一个普通对象的变化
  • 原文地址:https://www.cnblogs.com/enzymii/p/8412128.html
Copyright © 2011-2022 走看看