zoukankan      html  css  js  c++  java
  • LC 655. Print Binary Tree

    Print a binary tree in an m*n 2D string array following these rules:
    
    The row number m should be equal to the height of the given binary tree.
    The column number n should always be an odd number.
    The root node's value (in string format) should be put in the exactly middle of the first row it can be put. The column and the row where the root node belongs will separate the rest space into two parts (left-bottom part and right-bottom part). You should print the left subtree in the left-bottom part and print the right subtree in the right-bottom part. The left-bottom part and the right-bottom part should have the same size. Even if one subtree is none while the other is not, you don't need to print anything for the none subtree but still need to leave the space as large as that for the other subtree. However, if two subtrees are none, then you don't need to leave space for both of them.
    Each unused space should contain an empty string "".
    Print the subtrees following the same rules.
    Example 1:
    Input:
         1
        /
       2
    Output:
    [["", "1", ""],
     ["2", "", ""]]
    Example 2:
    Input:
         1
        / 
       2   3
        
         4
    Output:
    [["", "", "", "1", "", "", ""],
     ["", "2", "", "", "", "3", ""],
     ["", "", "4", "", "", "", ""]]
    Example 3:
    Input:
          1
         / 
        2   5
       / 
      3 
     / 
    4 
    Output:
    
    [["",  "",  "", "",  "", "", "", "1", "",  "",  "",  "",  "", "", ""]
     ["",  "",  "", "2", "", "", "", "",  "",  "",  "",  "5", "", "", ""]
     ["",  "3", "", "",  "", "", "", "",  "",  "",  "",  "",  "", "", ""]
     ["4", "",  "", "",  "", "", "", "",  "",  "",  "",  "",  "", "", ""]]
    Note: The height of binary tree is in the range of [1, 10].

    Runtime: 4 ms, faster than 46.79% of C++ online submissions for Print Binary Tree.

    可以看出,矩阵宽度是所有节点的和,长度是树高+1。然后就是二分,但要注意边界值。

    class Solution {
    public:
      vector<vector<string>> printTree(TreeNode* root) {
        int height = treedepth(root);
        int arrlen = (1 << (height+1)) - 1;
        vector<vector<string>> ret(height+1, vector<string>(arrlen, ""));
        helper(root, ret, 0, 0, arrlen-1);
        return ret;
      }
      void helper(TreeNode* root, vector<vector<string>>& ret, int level, int start, int end){
        if(!root) return ;
        int idx = start + (end - start) / 2;
        ret[level][idx] = to_string(root->val);
        helper(root->left, ret, level+1, start, idx);
        helper(root->right, ret, level+1, idx+1, end);
      }
    
      int treedepth(TreeNode* root){
        if(!root) return -1;
        return 1 + max(treedepth(root->left), treedepth(root->right));
      }
    };
  • 相关阅读:
    2020寒假简记
    感知神经网络模型与学习算法
    信息检索模型与评估
    Diffie-Hellman密钥交换
    RSA密码体制
    MySQL基准测试(benchmark)
    MySQL数据引擎
    MySQL 多版本并发控制(MVCC)
    MySQL事务管理
    利用dotnet restore 导入本地 .nupkg 包
  • 原文地址:https://www.cnblogs.com/ethanhong/p/10201070.html
Copyright © 2011-2022 走看看