zoukankan      html  css  js  c++  java
  • LC 377. Combination Sum IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

    Example:

    nums = [1, 2, 3]
    target = 4
    
    The possible combination ways are:
    (1, 1, 1, 1)
    (1, 1, 2)
    (1, 2, 1)
    (1, 3)
    (2, 1, 1)
    (2, 2)
    (3, 1)
    
    Note that different sequences are counted as different combinations.
    
    Therefore the output is 7.
    

    Follow up:
    What if negative numbers are allowed in the given array?
    How does it change the problem?
    What limitation we need to add to the question to allow negative numbers?

    Credits:
    Special thanks to @pbrother for adding this problem and creating all test cases.

     

    Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

    Example:

    nums = [1, 2, 3]
    target = 4
    
    The possible combination ways are:
    (1, 1, 1, 1)
    (1, 1, 2)
    (1, 2, 1)
    (1, 3)
    (2, 1, 1)
    (2, 2)
    (3, 1)
    
    Note that different sequences are counted as different combinations.
    
    Therefore the output is 7.
    

    Follow up:
    What if negative numbers are allowed in the given array?
    How does it change the problem?
    What limitation we need to add to the question to allow negative numbers?

    Credits:
    Special thanks to @pbrother for adding this problem and creating all test cases.

     

    Runtime: 2 ms, faster than 80.43% of Java online submissions for Combination Sum IV.

    class Solution {
      public int combinationSum4(int[] nums, int target) {
        int[] dp = new int[target+1];
        dp[0] = 1;
        for(int i=0; i<dp.length; i++){
          for(int j=0; j<nums.length; j++){
            if(i >= nums[j]){
              dp[i] += dp[i - nums[j]];
            }
          }
        }
        return dp[target];
      }
    }
  • 相关阅读:
    【BZOJ4517】排列计数(排列组合)
    【BZOJ2733】永无乡(线段树,启发式合并)
    【BZOJ1237】配对(贪心,DP)
    【BZOJ1492】货币兑换Cash(CDQ分治)
    CDQ分治模板
    【BZOJ3932】任务查询系统(主席树)
    【BZOJ3295】动态逆序对(BIT套动态加点线段树)
    【BZOJ3626】LCA(树上差分,树链剖分)
    图书管理系统
    树集合,树映射
  • 原文地址:https://www.cnblogs.com/ethanhong/p/10264063.html
Copyright © 2011-2022 走看看